




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
有关人脸识别技术论文 :TP391.4 :A :1674-098X(xx)ll(a)-0004-02 随着计算机的普及和应用,对个人身份的自动鉴定提出了越来越多的要求。虽然,已经存在一些相当可靠的身份验证方法如指纹,虹膜识别等,但是这些方法都需要参与者的某种程度的合作,而人脸识别则无须参与者太多的合作,而且具有直接、友好、方便的特点,是进行身份确认最自然直接的手段。人脸识别技术(Face Recognition Technology,FRT)就是用计算机对人脸图象进行特征提取和识别的模式识别技术。同时,它融合计算机图形学、模式识别、图象处理、计算机视觉和人工智能等多个学科的理论和方法。 人脸识别研究发展大致可分为三个阶段:第一阶段主要研究人脸识别所需要的面部特征,这一阶段工作的特点是识别过程全部依赖于操作人员。第二阶段是人机交互识别阶段。用几何特征参数来表示人脸正面图像:Goldstion.Harmon和Lesk用21维特征矢量表示了人脸面部特征,并设计了基于这一特征表示法的识别系统;也有采用统计识别的方法的研究者:用欧式距离来表征人脸特征,如嘴唇和鼻之间的距离,嘴唇的高度等。这类方法需要利用操作员的先验知识,需要人的干预。第三阶段才是真正的机器自动识别阶段。随着高速度性能计算机的发展,人脸识别方法有了较大的突破,提出了多种机器全自动识别系统。我国人脸识别技术的研究虽然起步较晚,但发展较快。中国科学院计算技术研究所,清华大学,东南大学,上海交通大学,复旦大学等,都已取得了一定成果。 3.1基于可视特征的方法 基于可视特征的方法主要是利用从人脸的表观特征总结出来的先验知识,使用规则来描述人脸的几何分布、颜色、纹理等可见特征,从而作为人脸检测和识别的依据。 3.1.1几何特征 人脸的几何特征包括脸型特征以及五官在脸上分布的几何特征。提取特征时往往要用到人脸结构的一些先验知识。识别所采用的几何特征是以人脸器官的形状和几何关系为基础的特征矢量,本质上是特征矢量之间的匹配,其分量通常包括人睑指定两点间的欧式距离、曲率、角度等。基于几何特征的识别方法比较简单、容易理解,但没有形成统一的特征提取标准;从图像中抽取稳定的特征较困难,特别是特征受到遮挡时;对较大的表情变化或姿态变化的鲁棒性较差。几何特征还可能由于光照、表情、遮挡等原因而被破坏,另外由人脸阴影所形成的边缘可能对几何特征的边缘带来不良影响。 3.1.2纹理特征 和指纹相似,每张人脸都有其特殊纹理特性,可以基于SGLD(空间灰度依赖矩阵)建立由一组不等式组成的人脸纹理模型,实现人脸检测与定位。 3.1.3颜色特征 目前已有RGB,HSV(HSI),YCrCb,YIQ,YES,CIE等颜色空间被用于标记人脸的肤色。肤色算法有如下的优点:(1)可以在普通工作站上以帧速率来实现人脸区域分割,(2)肤色分割算法没有使用特殊的脸部特征,因此头部方向和姿态的变化不会影响对于肤色区域的确定;(3)允许被跟踪对象自由活动,减少对环境的限制。但是由于光源的颜色以及光照的角度不同所造成的高亮和阴影等诸多因素的影响,利用颜色分割人脸仍然一个非常困难的问题。 3.2基于模板的方法 很多人脸检测系统是基于模板的,模板匹配的方法主要是通过计算模板和图像之间的相关性来实现识别功能。 3.2.1通用模板匹配 在模板匹配中,人脸标准模板由人工来定义。对于输入图像,分别计算标准模板中的脸部轮廓,眼睛,鼻子等的相关值,由相关程度来决定人脸的存在。这种方法的特点是实现起来比较简单,但是模板匹配方法在很多场合并不适用,因为简单的模板不能适应尺寸、姿态和形状的变化。因而实际应用中多数采用多分辨率、多尺度、多子模板和可变形模板实现模板匹配,以增加适应性和准确性。 3.2.2可变形模板匹配 可变形模板法可以说是几何特征方法的改进,其基本思想是:设计参数可调的器官模型,即可变形模板,定义一个能量函数,通过调整模型参数使得能量函数最小化,此时的模型参数即为对象的几何特征。可变形模板方法存在两个问题,一是能量函数中各种代价的加权系数只能由经验确定,难以推广,二是能量函数的优化过程十分耗时,难以实际应用。 3.3基于子空间方法 常用的线性子空间方法有:本征子空间、区别子空间、独立分量子空间等。此外,还有局部特征分析法、因子分析法等。这些方法也分别被扩展到混合线性子空间和非线性子空间。 3.4基于机器学习的方法 在基于几何特征的方法和基于模板的方法中,人脸的特征都是由专家预先定义好的.而在基于机器学习的方法中,人脸的特征或类别是利用统计分析和机器学习的技术从样本中学习来的。学习所得的人脸特征或类别存在于由各种算法所保证的分布规律、模型和判别函数中,并被用于人脸的检测和识别中。 3.4.1神经网络方法(ANN) 神经网络技术(ANN,Artificial Neural Networks)作为一类模式识别方法近年来发展迅速。神经网络可视为大量相联的简单处理器(神经元)构成的大规模并行计算系统。神经网络具有学习复杂的非线性输入输出关系的能力,对于模型和规则的依赖性较低,可以利用训练过程来适应数据。神经网络识别法是将人脸直接用灰度图(二维矩阵)表征,利用了神经网络的学习能力及分类能力。这种方法的优势在于保存了人脸图像中的材质信息及细微的形状信息,同时避免了较为复杂的特征提取工作。而且,由于图像被整体输入,符合格氏塔(Gestalt)心理学中对人类识别能力的解释。基于神经网络的方法的特点是信息处理方式是并行而非串行,并且信息编码的存储方式是分布式。 3.4.2支持向量机(SVM) 支持向量机(SVM,Support Vector Machines)是一类新型的基于统计的机器学习方法。由于其出色的学习性能,该技术已经成为机器学习领域的研究热点。SVM分类器是一种线性分类器,它选择可分离的超平面,以使不可见的测试模式的预知分类错误最小,目的是使期望总体误差的上边界最小。它是基于结构风险最小化原理的方法,较之于基于经验风险最小化的人工神经网络,一些难以逾越的问题,如模型的选择和过学习问题、非线性和维数灾难问题、局部极小点问题等都得到了很大程度的解决。 3.4.3贝叶斯方法(Bayes) 贝叶斯决策方法是统计模式识别中的一个基本方法。将两幅图像灰度差4 =Ij-Ik作为模式矢量,当其中的人脸属于同一个人时? 4为类内模式妇,属于不同人时为类间模式以。采用最大后验概率准则能够较好的解决此类模式分类问题。不过,人脸识别不同于一般的模式分类,不仅要判断待检测图像x与数据库中的图像Y是属于类内模式还是属于类间模式,还要判断图像x与图像Y是否属于同一个人。如果判断出X与数据库中的多个lr都属于同一个人,则还需要进一步判断哪一对匹配最好。因此,该问题具有较高的复杂性。 3.4.4隐马尔科夫模型(HMM) 隐马尔可夫模型是用于描述信号统计特性的统计模型。HMM使用马尔可夫链来模拟信号统计特征的变化,而这种变化是间接的通过观察序列来描述的,因此,隐马尔可夫过程是一个双重的随机过程。其中之一是马尔可夫链,这是基本随机过程,它描述状态的转移。另一个随机过程描述状态和观测值之闻的统计对应关系。在HMM中,节点表示状态,有向边表示状态之间的转移,一个状态可以有特征空间中的任意特征,对同一个特征,不同状态表现出这一特征的概率不同。由于HMM是一个统计模型,对于同一特征序列,可能会对应许多状态序列,特征序列与状态序列之间的对应关系是非常正确的。 目前的各种人脸识别技术方法都有各自优缺点,因此,许多人倾向于将多种方法综合起来运用。并且,人脸识别是人脸视觉的独特过程,因此必须结合生理学和心理学的研究成果。同时,如何与其他生物特征识别结合以提高识别率也是今后研究的方向。我们相信随着计算机技术和生物识别技术的发展,以及人脸的检测与识别技术的不断完善,在不远的将来,一套准确而高效的人脸检测与识别系统就会呈现在我们的面前。 l周德龙,张晓华,刘博等.JDL大规模人脸图像数据库介绍A.生物识别研究新进展(2)C.北京:清华大学出版社,xx:118-120. 2肖冰,王映辉,人脸识别研究综述J.计算机应用研究,xx,8(1):1-5. 3陈锻生,刘政凯.肤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑智能化安防监控中心创新创业项目商业计划书
- 小麦深加工副产品饲料添加剂创新创业项目商业计划书
- 智能建筑空调舒适度评估创新创业项目商业计划书
- 2025餐饮连锁特许经营合同范本
- 2025施工班组安全生产合同范本
- 2025物业服务合同
- 2025年主管护师考试考试测试题及答案
- 2025【合同范本】木门销售合同
- 2025年康复治疗师相关专业知识考试真题(附答案)
- 2025年网站隐私保护合同协议
- 牙齿矫正方式对比
- 校企合作实习生管理制度与考核办法
- 穿线施工方案(3篇)
- 农村妇女礼貌礼仪课件
- 产品报价基础知识培训课件
- 水资源基础调查项目方案 投标文件(技术方案)
- 女性围绝经期营养管理中国专家共识(2025版)
- 2025驾驶员安全教育培训
- GB/T 16545-2025金属和合金的腐蚀腐蚀试样上腐蚀产物的清除
- 无人机公司飞手管理制度
- 房地产抵押贷款合同电子版预览
评论
0/150
提交评论