




已阅读5页,还剩24页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章,点、直线、平面之间的位置关系,2.2直线、平面平行的判定及其性质,2.2.4平面与平面平行的性质,2010年在上海举行的世界博览会给全世界的游客留下了深刻的印象,作为东道主的中国国家馆被永久保留,成为上海市的又一标志性建筑中国国家馆表达了“东方之冠,鼎盛中华,天下粮仓,富庶百姓”的中国文化的精神与气质展馆共分三层,这三层给人以平行平面的感觉,平面与平面平行的性质定理,平行,ab,解析圆台的上、下底面互相平行,平面与圆台的上、下底面分别相交,所得交线m与n平行,C,解析根据两个平面平行的性质可知,这两个平面平行,A,解析ADBC,AD与BC确定一个平面.,AB,DC,ABDC.四边形ABCD是平行四边形ADBC.,命题方向1对面面平行性质的理解,C,解析(1)因为平面平面,直线a,直线b,所以直线a与直线b无公共点当直线a与直线b共面时,ab;当直线a与直线b异面时,a与b所成的角大小可以是90.综上知,都有可能出现,共有3种情形故选C,(2)正确证明如下:如图,在平面内取两条相交直线a、b,分别过a、b作平面,使它们分别与平面交于两相交直线a、b,因为,所以aa,bb.又因为,同理在平面内存在两相交直线a,b,使得aa,bb,所以aa,bb,所以.,正确若直线a与平面平行或直线a,则由平面平面知a与无公共点或a,这与直线a与相交矛盾,所以a与相交正确如图,过直线PQ作平面,a,b,由得ab.因为PQ,PQ,所以PQb.因为过直线外一点有且只有一条直线与已知直线平行,所以直线a与直线PQ重合因为a,所以PQ.,规律方法常用的面面平行的其他几个性质:(1)两个平面平行,其中一个平面内的任意一条直线平行于另一个平面(2)夹在两个平行平面之间的平行线段长度相等(3)经过平面外一点有且只有一个平面与已知平面平行(4)两条直线被三个平行平面所截,截得的对应线段成比例(5)如果两个平面分别平行于第三个平面,那么这两个平面互相平行,解析若a,则显然满足题目条件若a,过直线a作平面,b,c,于是由直线a平面得ab,由得bc,所以ac,又a,c,所以a.,a或a,命题方向2平面与平面平行性质定理的应用,规律方法应用平面与平面平行性质定理的基本步骤,对平面与平面平行的性质定理理解不正确,忽略“第三个平面”这一条件,错解这个说法正确错因分析忽略了AB,CD可能异面的情况当AB,CD异面时,AC与BD不平行思路分析AB,CD共面时,ACBD;AB,CD异面时,AC,但AC与BD不平行同理BD,但BD与AC不平行正解这个说法错误,转化与化归思想在线面、面面平行性质定理中的应用,思路分析直接用判定定理证明较困难,可通过证明过MN的平面与平面AA1B1B平行,得到MN平面AA1B1B.,NP平面AA1B1B,AB平面AA1B1B,NP平面AA1B1B.MPBB1,MP平面AA1B1B,BB1平面AA1B1B,MP平面AA1B1B.又MP平面MNP,NP平面MNP,MPNPP,平面MNP平面AA1B1B.MN平面MNP,MN平面AA1B1B.,规律方法(1)证明线面平行的方法主要有三种:应用线面平行的定义;(反证法)应用线面平行的判定定理;应用面面平行的性质,即“两个平面平行时,其中一个平面内的任意一条直线都平行于另一个平面”(2)应用平面与平面平行的性质证题的关键是找到过直线和已知平面平行的平面并给予证明,这时注意线线平行,线面平行和面面平行之间的相互转化,解析本题考查线面平行的性质a是一条直线,a或a与相交或在平面内当a时,只有一个;当a与相交或在平面内时,不存在,故选D,D,解析分别在平面与
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 应急安全工作培训课件
- 2025山东省莱州市中考数学经典例题含答案详解【能力提升】
- 婴幼儿秋季腹泻生理机制与高发原因解析
- 2024年自考专业(金融)自我提分评估含答案详解【典型题】
- 酒精消费与癌症风险
- 借贷双务合同(标准版)
- 补充协议补充合同(标准版)
- 做账实操-《民非会计制度》的核算内容
- 2024-2025学年中医助理医师每日一练试卷及参考答案详解(A卷)
- 2025年能源与资源行业:新能源储能系统性能优化与成本控制策略报告001
- 厂房分割租赁协议书
- 会计中级职称《财务管理》电子书
- GB/T 45345-2025金属及其他无机覆盖层工程用直流磁控溅射银镀层镀层附着力的测量
- 无人机教员聘用协议书
- 药物非临床研究质量管理规范
- 脑科生理病理图谱解读
- 足球教练员的职业素养与道德规范
- 产地证培训讲义
- 《南京理工大学化工》课件
- 养殖场远程视频监控解决方案
- 二手车转让免责协议书范本
评论
0/150
提交评论