IROS2019国际学术会议论文集Biped Robot Pelvis Kinematics Estimation based on the Touch-Point Updating_第1页
IROS2019国际学术会议论文集Biped Robot Pelvis Kinematics Estimation based on the Touch-Point Updating_第2页
IROS2019国际学术会议论文集Biped Robot Pelvis Kinematics Estimation based on the Touch-Point Updating_第3页
IROS2019国际学术会议论文集Biped Robot Pelvis Kinematics Estimation based on the Touch-Point Updating_第4页
IROS2019国际学术会议论文集Biped Robot Pelvis Kinematics Estimation based on the Touch-Point Updating_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Abstract This study proposes a biped-robot pelvis- kinematics estimator based on the touch-point updating method. Because the pelvis frame is used as the base coordinate for the control, the kinematics of it with respect to the global frame should be precisely estimated. To this end, it was necessary to know where the robot made contact with the ground. The touch- point concept was introduced as the temporal contact-point, which was instantly the robots rotation center. By updating this point, the bipeds global pelvis-kinematics could be estimated. The proposed estimator was implemented into the actual robot, and its superiority was verified through ground-truth data. Index Terms Humanoid robot state estimation, pelvis kinematics estimation, contact point estimation, biped walking, geometry reconstruction I. INTRODUCTION iped robots are multi-degree of freedom robots, possessing shape similar to that of humans. Recently, biped humanoid robots with various functions and forms have been developed 1-4. Previously, these robots were only required to operate within a limited environment. Recently, however, they have been required to operate within various complex environments. To this end, hardware and control algorithms should be developed harmoniously. In particular, real-time techniques to estimate the accurate state of a biped robot are required to achieve the desired performance. An accurate and fast state estimation enables a more sophisticated feedback controller design, which allows the robot to cope with various dynamic situations more efficiently. Among the various states, it is particularly important to accurately estimate the pelvis kinematics (position and orientation of the pelvis frame) because the pelvis kinematics information is the basis of other estimators and the pelvis frame is typically used as the base frame for robot control. Accordingly, many existing studies employ their own pelvis kinematics estimation framework. * This work was supported by Development of core technology for advanced locomotion / manipulation based on high-speed / power robot platform and robot intelligence 10070171, project from the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea. Hyoin Bae, Jaesung Oh, Hyun-Min Joe and Jun-Ho Oh are with the Humanoid Research Center, School of Mechanical, Aerospace / 2: Calculate forward Kinematics (w/t robot frame) Current_Touch_point_Pos =Forward_Kinematics(Sensor_Encoder,Sensor_FT,Current_Contact_foot, Model_Parameter); / 3: Calculate touch-point variation (w/t robot frame) Delta_Touch_point = Current_Touch_point_Pos - Prev_Touch_point_Pos; / 4: Update global touch-point position Pelvis_rotation_Matrix = Rotation_M(Sensor_FOG.roll, Sensor_FOG.pitch, Sensor_FOG.yaw); Current_Global_Touch_point =Prev_Global_Touch_point+ Pelvis_rotation_Matrix*Delta_Touch_point; / 5: Calculate global pelvis position Current_Global_Pelvis_Pos =Current_Global_Touch_point Pelvis_rotation_Matrix*Current_Touch_point_Pos; / - / COM-Kinematics Estimation / - 7509 ACKNOWLEDGMENT This work was supported by Development of core technology for advanced locomotion / manipulation based on high-speed / power robot platform and robot intelligence 10070171, project from the Ministry of Trade, Industry and Energy (MOTIE) of the Republic of Korea. REFERENCES 1 Jung, T., Lim, J., Bae, H., Lee, K. K., Joe, H. M., & Oh, J. H. (2018). Development of the Humanoid Disaster Response Platform DRC- HUBO+. IEEE Transactions on Robotics, 34(1), 1-17. doi: 10.1109/TRO.2017.2776287. 2 Hirose, M., & Ogawa, K. (2007). Honda humanoid robots development. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 365(1850), 11-19. doi:10.1098/rsta.2006.1917. 3 Johnson, M., Shrewsbury, B., Bertrand, S., Wu, T., Duran, D., Floyd, M., . & Carff, J. (2015). Team IHMCs lessons learned from the DARPA robotics challenge trials. Journal of Field Robotics, 32(2), 192- 208. doi: 10.1002/rob.21571. 4 Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008, September). Humanoid robot HRP-3. In Intelligent Robots and Systems, 2008. IROS 2008. IEEE/RSJ International Conference on (pp. 2471-2478). IEEE. doi:10.1109/IROS.2008.4650604. 5 Marques, L., Lobo, J., Dias, J., Nunes, U., & De Almeida, A. T. (1999). Sensors for legged mobile robots. In Proc. of 2nd Int. Workshop on Climbing & Walking Robots (pp. 33-58). 6 Oriolo, G., Paolillo, A., Rosa, L., & Vendittelli, M. (2012, November). Vision-based odometric localization for humanoids using a kinematic EKF. In Humanoid Robots (Humanoids), 2012 12th IEEE-RAS International Conference on (pp. 153-158). IEEE. doi: 10.1109/HUMANOIDS.2012.6651513. 7 Fallon, M. F., Antone, M., Roy, N., & Teller, S. (2014, November). Drift-free humanoid state estimation fusing kinematic, inertial and lidar sensing. In Humanoid Robots (Humanoids), 2014 14th IEEE-RAS International Conference on (pp. 112-119). IEEE. doi: 10.1109/HUMANOIDS.2014.7041346. 8 Kuindersma, S., Deits, R., Fallon, M., Valenzuela, A., Dai, H., Permenter, F., . & Tedrake, R. (2016). Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Autonomous Robots, 40(3), 429-455. doi: 10.1007/s10514-015-9479- 3. 9 Masuya, K., & Sugihara, T. (2015). Dead reckoning for biped robots that suffers less from foot contact condition based on anchoring pivot estimation. Advanced Robotics, 29(12), 785-799. doi: 10.1080/01691864.2015.1011694. 10 Masuya, K., & Sugihara, T. (2016). COM motion estimation of a biped robot based on kinodynamics and torque equilibrium. Advanced Robotics, 30(10), 691-703. doi: 10.1080/01691864.2016.1150201. 11 Rotella, N., Bloesch, M., Righetti, L., & Schaal, S. (2014, September). State estimation for a humanoid robot. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on (pp. 952-958). IEEE. doi: 10.1109/IROS.2014.6942674. 12 Xinjilefu, X., Feng, S., Huang, W., & Atkeson, C. G. (2014, May). Decoupled state estimation for humanoids using full-body dynamics. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 195-201). IEEE. doi: 10.1109/ICRA.2014.6906609. 13 Xinjilefu, X., Feng, S., & Atkeson, C. G. (2014, September). Dynamic state estimation using quadratic programming. In Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on (pp. 989-994). IEEE. doi: 10.1109/IROS.2014.6942679. 14 Pongsak, L., Okada, M., & Nakamura, Y. (2002). Optimal filtering for humanoid robot state estimators. In Proceedings of SICE System Integration Division Annual Conference (SI2002), 2P13-04. 15 Lowrey, K., Dao, J., & Todorov, E. (2016, November). Real-time state estimation with whole-body multi-contact dynamics: A modified UKF approach. In Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International Conference on (pp. 1225-1232). IEEE. doi: 10.1109/HUMANOIDS.2016.7803426. 16 Kaneko, K., Kanehiro, F., Kajita, S., Morisawa, M., Fujiwara, K., Harada, K., & Hirukawa, H. (2005, August). Slip observer for walking on a low friction floor. In Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ International Conference on (pp. 634-640). IEEE. doi: 10.1109/IROS.2005.1545184. 17 Lee, Y., Lee, H., Hwan

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论