




已阅读5页,还剩94页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第六章细胞的能量转换线粒体和叶绿体,线粒体与氧化磷酸化叶绿体与光合作用线粒体和叶绿体是半自主性细胞器线粒体和叶绿体的增殖与起源,第一节线粒体与氧化磷酸化,线粒体的形态结构线粒体的化学组成及酶的定位氧化磷酸化线粒体与疾病,一、线粒体的形态结构,线粒体的形态、大小、数量与分布线粒体的超微结构外膜(outermembrane):上有筒状圆柱,其成分为孔蛋白(porin);通透性较高。内膜(innermembrane):高度不通透性,向内折叠形成嵴(cristae)。含有与能量转换相关的蛋白膜间隙(intermembranespace):充满无定形液体,含许多可溶性酶、底物及辅助因子。基质或内室(matrix):含三羧酸循环酶系、线粒体基因表达酶系等以及线粒体DNA,RNA,核糖体。,执行氧化反应的电子传递链ATP合成酶线粒体内膜转运蛋白,二、线粒体的化学组成及酶的定位,线粒体组分分离方法线粒体的化学组成线粒体酶的定位,线粒体的化学组成,蛋白质(线粒体干重的6570)可溶性蛋白:多数是基质中的酶和膜的外周蛋白不容性蛋白:是膜的镶嵌蛋白、结构蛋白和部分酶蛋白脂类(线粒体干重的2530):磷脂占3/4以上,外膜主要是卵磷脂,内膜主要是心磷脂。线粒体脂类和蛋白质的比值:0.3:1(内膜);1:1(外膜)内外膜在化学组成上的根本区别就是脂质和蛋白质的比值不同,三、氧化磷酸化,线粒体主要功能是进行氧化磷酸化,合成ATP,为细胞生命活动提供直接能量;与细胞中氧自由基的生成、细胞凋亡、细胞的信号转导、细胞内多种离子的跨膜转运及电解质稳态平衡的调控有关。氧化磷酸化(oxidativephosphorylation)的分子基础氧化磷酸化的偶联机制化学渗透假说(ChemiosmoticHypothesis,Mithchell,1961)质子动力势的其他作用线粒体能量转换过程略图,氧化磷酸化的分子基础,氧化磷酸化过程实际上是能量转换过程,即有机分子中储藏的能量高能电子质子动力势ATP氧化(电子传递、消耗氧,放能)与磷酸化(ADP+Pi,储能)同时进行,密切偶连,分别由两个不同的结构体系执行电子传递链(electron-transportchain)的四种复合物,组成两种呼吸链:NADH呼吸链,FADH2呼吸链在电子传递过程中,有几点需要说明ATP合成酶(ATPsynthase)(磷酸化的分子基础),电子传递链的四种复合物(哺乳类),复合物:NADH-CoQ还原酶复合物(既是电子传递体又是质子移位体)组成:含42个蛋白亚基,至少6个Fe-S中心和1个黄素蛋白。作用:催化NADH氧化,从中获得2高能电子辅酶Q;泵出4H+复合物:琥珀酸脱氢酶复合物(是电子传递体而非质子移位体)组成:含FAD辅基,2Fe-S中心,作用:催化2低能电子FADFe-S辅酶Q(无H+泵出)复合物:细胞色素bc1复合物(既是电子传递体又是质子移位体)组成:包括1cytc1、1cytb、1Fe-S蛋白作用:催化电子从UQH2cytc;泵出4H+(2个来自UQ,2个来自基质)复合物:细胞色素C氧化酶(既是电子传递体又是质子移位体)组成:二聚体,每一单体含13个亚基,三维构象,cyta,cyta3,Cu,Fe作用:催化电子从cytc分子O2形成水,2H+泵出,2H+参与形成水,在电子传递过程中,有几点需要说明,四种类型电子载体:黄素蛋白、细胞色素(含血红素辅基)、Fe-S中心、辅酶Q。前三种与蛋白质结合,辅酶Q为脂溶性醌。电子传递起始于NADH脱氢酶催化NADH氧化,形成高能电子(能量转化),终止于O2形成水。电子传递方向按氧化还原电势递增的方向传递(NAD+/NAD最低,H2O/O2最高)高能电子释放的能量驱动线粒体内膜三大复合物(H+-泵)将H+从基质侧泵到膜间隙,形成跨线粒体内膜H+梯度(能量转化)电子传递链各组分在膜上不对称分布,ATP合成酶(磷酸化的分子基础),分子结构线粒体ATP合成系统的解离与重建实验证明电子传递与ATP合成是由两个不同的结构体系执行,F1颗粒具有ATP酶活性(如何验证?)工作特点:可逆性复合酶,即既能利用质子电化学梯度储存的能量合成ATP,又能水解ATP将质子从基质泵到膜间隙ATP合成机制BandingChangeMechanism(Boyer1979)亚单位相对于亚单位旋转的直接实验证据?,氧化磷酸化的偶联机制化学渗透假说,化学渗透假说内容:电子传递链各组分在线粒体内膜中不对称分布,当高能电子沿其传递时,所释放的能量将H+从基质泵到膜间隙,形成H+电化学梯度。在这个梯度驱使下,H+穿过ATP合成酶回到基质,同时合成ATP,电化学梯度中蕴藏的能量储存到ATP高能磷酸键。质子动力势(protonmotiveforce)支持化学渗透假说的实验证据该实验表明:质子动力势是ATP合成的动力膜应具有完整性电子传递与ATP合成是两件相关而又不同的事件,质子动力势的其他作用,物质转运产热:冬眠动物与新生儿的BrownFatCell线粒体产生大量热量,第二节叶绿体与光合作用,叶绿体(Chloroplast)的形态结构叶绿体的功能光合作用(photosynthesis),一、叶绿体(Chloroplast)的形态结构,叶绿体与线粒体形态结构比较叶绿体内膜并不向内折叠成嵴;内膜不含电子传递链;除了膜间隙、基质外,还有类囊体;捕光系统、电子传递链和ATP合成酶都位于类囊体膜上。叶绿体超微结构,二、叶绿体的功能光合作用(photosynthesis),Photosynthesis:(1)光合电子传递反应光反应(LightReaction)(2)碳固定反应暗反应(DarkReaction)光反应暗反应(碳固定)光合作用与有氧呼吸的关系图,光反应,在类囊体膜上由光引起的光化学反应,通过叶绿素等光合色素分子吸收、传递光能,水光解,并将光能转换为电能(生成高能电子),进而通过电子传递与光合磷酸化将电能转换为活跃化学能,形成ATP和NADPH并放出O2的过程。包括原初反应、电子传递和光合磷酸化。原初反应(primaryreaction)光能的吸收、传递与转换,形成高能电子(由光系统复合物完成,光合作用单位的概念)电子传递与光合磷酸化,电子传递与光合磷酸化,电子传递与光合磷酸化需说明以下几点:最初电子供体是H2O,最终电子受体是NADP+。电子传递链中唯一的H+-pump是cytb6f复合物。类囊体腔的质子浓度比叶绿体基质高,该浓度梯度产生的原因归于:H2O光解、cytb6f的H+-pump、NADPH的形成。ATP、NADPH在叶绿体基质中形成。电子沿光合电子传递链传递时,分为非循环式光合磷酸化和循环式光合磷酸化两条通路。循环式传递的高能电子在PS被光能激发后经cytb6f复合物回到PS。结果是不裂解H2O、产生O2,不形成NADPH,只产生H+跨膜梯度,合成ATP。,暗反应(碳固定),利用光反应产生的ATP和NADPH,使CO2还原为糖类等有机物,即将活跃的化学能最后转换为稳定的化学能,积存于有机物中。这一过程不直接需要光(在叶绿体基质中进行)。C3途径(C3pathway):亦称卡尔文(Calvin)循环。CO2受体为RuBP(核酮糖1,5二磷酸),最初产物为3-磷酸甘油酸(PGA)。C4途径(C4pathway):亦称哈奇-斯莱克(Hatch-Slack)途径,CO2受体为PEP(磷酸烯醇式丙酮酸),最初产物为草酰乙酸(OAA)。景天科酸代谢途径(Crassulaceanacidmetabolismpathway,CAM途径):夜间固定CO2产生有机酸,白天有机酸脱羧释放CO2,进行CO2固定。,第三节线粒体和叶绿体是半自主性细胞器,半自主性细胞器的概念:自身含有遗传表达系统(自主性);但编码的遗传信息十分有限,其RNA转录、蛋白质翻译、自身构建和功能发挥等必须依赖核基因组编码的遗传信息(自主性有限)。线粒体和叶绿体的DNA线粒体和叶绿体的蛋白质合成线粒体和叶绿体蛋白质的运送与组装,一、线粒体和叶绿体的DNA,mtDNA/ctDNA形状、数量、大小mtDNA和ctDNA均以半保留方式进行自我复制复制时,母链的双链DNA解开成两股单链,各自作为摸板指导子代合成新的互补链。子代细胞的DNA双链,其中一股单链从亲代完整地接受过来,另一股单链则完全重新合成。mtDNA复制的时间主要在细胞周期的S期及G2期,DNA先复制,随后线粒体分裂。ctDNA复制的时间在G1期。复制仍受核控制,mtDNA/ctDNA形状、数量、大小,双链环状(除绿藻mtDNA,草履虫mtDNA)mtDNA大小在动物中变化不大,但在植物中变化较大高等植物,120kbp200kbp;人mtDNA:16,569bp,37个基因(编码12S,16SrRNA;22种tRNA;13种多肽:NADH脱氢酶7个亚基,cytb-c1复合物中1个cytb,细胞色素C氧化酶3个亚基,ATP合成酶2个Fo亚基),二、线粒体和叶绿体的蛋白质合成,线粒体和叶绿体合成蛋白质的种类十分有限线粒体或叶绿体蛋白质合成体系对核基因组具有依赖性不同来源的线粒体基因,其表达产物既有共性,也存在差异参加叶绿体组成的蛋白质来源有种情况:由ctDNA编码,在叶绿体核糖体上合成;由核DNA编码,在细胞质核糖体上合成;由核DNA编码,在叶绿体核糖体上合成。,三、线粒体和叶绿体蛋白质的运送与组装,线粒体蛋白质的运送与组装定位于线粒体基质的蛋白质的运送定位于线粒体内膜或膜间隙的蛋白质运送叶绿体蛋白质的运送及组装,第四节线粒体和叶绿体的增殖与起源,线粒体和叶绿体的增殖线粒体和叶绿体的起源,一、线粒体和叶绿体的增殖,线粒体的增殖:由原来的线粒体分裂或出芽而来。叶绿体的发育和增殖个体发育:由前质体(proplastid)分化而来。增殖:分裂增殖,二、线粒体和叶绿体的起源,内共生起源学说(endosymbiosishypothesis)非共生起源学说,内共生起源学说,叶绿体起源于细胞内共生的蓝藻:Mereschkowsky,1905年Margulis,1970年:线粒体的祖先-原线粒体是一种革兰氏阴性细菌:叶绿体的祖先是原核生物的蓝细菌(Cyanobacteria),即蓝藻。内共生起源学说的主要论据:不足之处,内共生起源学说的主要论据,基因组在大小、形态和结构方面与细菌相似。有自己完整的蛋白质合成系统,能独立合成蛋白质,蛋白质合成机制有很多类似细菌而不同于真核生物。两层被膜有不同的进化来源,外膜与细胞的内膜系统相似,内膜与细菌质膜相似。以分裂的方式进行繁殖,与细菌的繁殖方式相同。能在异源细胞内长期生存,说明线粒体和叶绿体具有的自主性与共生性的特征。线粒体的祖先很可能来自反硝化副球菌或紫色非硫光合细菌。发现介于胞内共生蓝藻与叶绿体之间的结构-蓝小体,其特征在很多方面可作为原始蓝藻向叶绿体演化的佐证。,不足之处,从进化角度,如何解释在代谢上明显占优势的共生体反而将大量的遗传信息转移到宿主细胞中?不能解释细胞核是如何进化来的,即原核细胞如何演化为真核细胞?线粒体和叶绿体的基因组中存在内含子,而真细菌原核生物基因组中不存在内含子,如果同意内共生起源学说的观点,那么线粒体和叶绿体基因组中的内含子从何发生?,非共生起源学说,主要内容:真核细胞的前身是一个进化上比较高等的好氧细菌。成功之处:解释了真核细胞核被膜的形成与演化的渐进过程。不足之处,不足之处,实验证据不多无法解释为何线粒体、叶绿体与细菌在DNA分子结构和蛋白质合成性能上有那么多相似之处对线粒体和叶绿体的DNA酶、RNA酶和核糖体的来源也很难解释。真核细胞的细胞核能否起源于细菌的核区?,肌细胞和精子的尾部聚集较多的线粒体,以提供能量,肽聚糖,线粒体主要酶的分布,复合物INADH脱氢酶,复合物IV细胞色素氧化酶,复合物II琥珀酸脱氢酶,复合物III细胞色素还原酶,低渗液,非沉积碎片,丙酮酸盐,在电子传递过程中,伴随着质子从线粒体内膜的里层向外层转移,形成跨膜的氢离子梯度,这种势能驱动了氧化磷酸化反应(提供了动力),合成了ATP。,在高等植物中叶绿体象双凸或平凸透镜,长径510um,短径24um,厚23um。高等植物的叶肉细胞一般含50200个叶绿体,可占细胞质的40%,叶绿体的数目因物种细胞类型,生态环境,生理状态而有所不同。在藻类中叶绿体形状多样,有网状、带状、裂片状和星形等等,而且体积巨大,可达100um。叶绿体由叶绿体外被(chloroplastenvelope)、类囊体(thylakoid)和基质(stroma)3部分组成,叶绿体含有3种不同的膜:外膜、内膜、类囊体膜和3种彼此分开的腔:膜间隙、基质和类囊体腔。,光合作用的是能量及物质的转化过程。首先光能转化成电能,经电子传递产生ATP和NADPH形式的不稳定化学能,最终转化成稳定的化学能储存在糖类化合物中。分为光反应(lightreaction)和暗反应(darkreaction),前者需要光,涉及水的光解和光合磷酸化,后者不需要光,涉及CO2的固定。分为C3和C4两类。,P680接受能量后,由基态变为激发态(P680*),然后将电子传递给去镁叶绿素(原初电子受体),P680*带正电荷,从原初电子供体Z(反应中心D1蛋白上的一个酪氨酸侧链)得到电子而还原;Z+再从放氧复合体上获取电子;氧化态的放氧复合体从水中获取电子,使水光解。2H2OO2+4H+4e-在另一个方向上去镁叶绿素将电子传给D2上结合的QA,QA又迅速将电子传给D1上的QB,还原型的质体醌从光系统复合体上游离下来,另一个氧化态的质体醌占据其位置形成新的QB。质体醌将电子传给细胞色素b6/f复合体,同时将质子由基质转移到类囊体腔。电子接着传递给位于类囊体腔一侧的含铜蛋白质体蓝素(plastocyanin,PC)中的Cu2+,再将电子传递到光系统。,酵母线粒体主要酶复合物的生物合成,组成线粒体各部分的蛋白质,绝大多数都是由核DNA编码并在细胞质核糖体上合成后再运送到线粒体各自的功能位点上,定位于线粒体基质中的蛋白,其导肽的N端带正电荷,含有导向基质的信息。在跨膜转运时,首先在细胞质Hsp70的参与下解折叠为伸展状态,然后与膜受体结合并在接触点处通过线粒体膜进入基质,其导肽即被基质中的蛋白水解酶水解,称为成熟的蛋白质,线粒体膜间隙蛋白的转运,线粒体膜间隙蛋白,如细胞色素c的定位需要两个导向序列,位于N端最前面的为基质导向序列(matrix-targetingsequence),其后还有第二个导向序列,即膜间隙导向序列(intermembrane-space-targetingsequence),功能是将蛋白质定位于内膜或膜间隙,这类蛋白有两种转运定位方式。保守性寻靶(conservativetargeting)前体蛋白在N-端的基质导向序列引导下采用与线粒体基质蛋白同样的运输方式,将前体蛋白转运到线粒体基质,在基质中由转肽酶切除基质导向序列后,膜间隙导向序列就成了N端的导向序列,它能够识别内膜的受体和转运通道蛋白,引导蛋白质穿过内膜,进入线粒体膜间隙,然后由线粒体膜间隙中的转肽酶将膜间隙导向序列切除(图),转运到叶绿体内膜和类囊体的前体蛋白含有两个N端信号序列,第一个被切除后,暴露出第二个信号序列,将蛋白导向内膜或类囊体膜,基质导向序列,类囊体转移序列,蓝细菌,紫细菌,生物的基本能量来源:太阳光的辐射能(陆地;海洋上层)太阳光的辐射能化学能。(植物叶绿体和蓝藻光合片层中进行)动物通过分解代谢取得能量,线粒体是高效地将有机物转换为细胞生命活动的直接能源ATP的细胞器。线粒体产能细胞器叶绿体线粒体和叶绿体的基本特征,分布:线粒体普遍存在于真核细胞中。叶绿体仅存在于植物细胞中。形态特征:封闭的双层单位膜结构,且内膜演化为表面积扩增的内膜特化结构系统(结构框架、包含酶的内腔)。遗传特征:都具有环状DNA及自身转录RNA与翻译蛋白质的体系。半自主性的细胞器:线粒体和叶绿体具有自己的遗传物质和进行蛋白质合成的全套机构,但组成线粒体和叶绿体的各种蛋白质成分则是由核DNA和线粒体DNA或叶绿体DNA分别编码的。,线粒体(mitochondrion)是细胞内的能量工厂,通过氧化磷酸化作用进行能量转换。发现历史,内膜的不通透性,把膜间隙与基质(内室)分开在ATP的生成中起作用内膜含有大量的心磷脂形成通透性屏障,嵴,功能:使内膜的表面积扩增围成一个包含多种酶的内腔(基质)类型:板层状;管状嵴的形状和数量与细胞种类及生理状况密切相关,FMNFeSI,FADFeSII,Cytb-FeS-Cyc1III,Cytaa3IV,NADH,琥珀酸,CoQ,Cytc,2H+,H2O,1/2O2,ADP+Pi,ADP+Pi,ADP+Pi,NADH可以产生3分子ATP;FAD则可以产生2分子ATP。,ATP,ATP,ATP,线粒体与疾病,线粒体是细胞内最易受损伤的一个敏感细胞器。线粒体的异常会影响整个细胞的正常功能,从而导致病变。线粒体病(Mitochondrialdiseases,MD)病变也可引起细胞内线粒体产生继发性的变化。如:肝癌细胞线粒体内己糖激酶活性较高。克山病(心肌线粒体病)缺硒,发现历史,1890年R.Altaman首次发现线粒体,命名为bioblast,以为它可能是共生于细胞内独立生活的细菌。1898年,有人首次将这种颗粒命名为线粒体,意思是“类似线状的颗粒”(thread-likegranule),并很快被大家所接受。1900年,LeonorMichaelis在线粒体的功能研究方面取得了突破性的进展。他用染料Janusgreen对肝细胞进行染色,这种染料将线粒体染成绿色。当细胞消耗氧之后,线粒体的颜色逐渐消失了,当时已经了解这种颜色的变化是颜料的氧化还原状态改变的结果,从而提示线粒体具有氧化还原反应的功能。,1913年,OttoWarburg从细胞匀浆质中分离了线粒体,并发现它能够消耗氧。但是,这些发现当时并没有引起生物学家足够的重视,因为人们普遍认为线粒体的作用主要是参与分化细胞遗传特性的转变。人们真正注意线粒体在能量代谢中的作用是分离纯化方法的发展和线粒体独立功能的研究。在20世纪40年代早期,ArbertClaude开创了细胞组分分离技术,能够将线粒体与其他细胞组分分开。但他所用是盐法,而盐会破坏线粒体的作用,所以用这种方法分离的线粒体看不到有关Krebs循环以及呼吸链的成份。1948年,GeorgeHogeboom、WalterSchneider和GeorgePalade等终于分离到具有生物活性的线粒体,他们采用的分离介质是蔗糖而不是盐,因此不会破坏线粒体。分离方法上的突破,使得EugeneKenedy和AlbertLehninger证明了线粒体具有Krebs循环、电子传递、氧化磷酸化的作用,从而证明了线粒体是真核生物进行能量转换的细胞器。关注四点:关于膜结构的推测;功能的推测;方法的发展;方法的革新。,线粒体各部分的功能,外膜线粒体外膜是最外的一层全封闭的单位膜结构,是线粒体的界膜,厚67nm,平整光滑。外膜含有孔蛋白,所以外膜的通透性非常高,使得膜间隙中的环境几乎与胞质溶胶相似。外膜含有一些特殊的酶类,如单胺氧化酶(monoamineoxidase),这种酶能够终止胺神经递质,如降肾上腺素和多巴胺的作用。内膜位于外膜的内侧包裹线粒体基质的一层单位膜结构,厚56nm。内膜的通透性较低,一般不允许离子和大多数带电的小分子通过。线粒体内膜通常要向基质折褶形成嵴(cristae),其上有ATP合酶(ATPsynthase),又叫F0F1ATP酶复合体,是一个多组分的复合物。内膜的酶类可以粗略地分为三类运输酶类、合成酶类、电子传递和ATP合成酶类。内膜是线粒体进行电子传递和氧化磷酸化的主要部位。在电子传递和氧化磷酸化过程中,线粒体将氧化过程中释放出来的能量转变成ATP。,膜间隙线粒体内膜和外膜之间的间隙称为膜间隙,宽68nm,由于外膜通透性很强,而内膜的通透性又很低,所以膜间隙中的化学成分很多,几乎接近胞质溶胶。功能是建立和维持氢质子梯度。线粒体基质:内膜和嵴包围着的线粒体内部空间是线粒体基质,与三羧酸循环、脂肪酸氧化、氨基酸降解等有关的酶都存在于基质之中;此外还含有DNA、tRNAs、rRNA、以及线粒体基因表达的各种酶和核糖体。线粒体外膜的通透性高,又没有电子传递装置,所以没有什么作用吗?,答:有作用。虽然外膜含有孔蛋白,最大可允许5,000道尔顿的分子通过,由于ATP、NAD、辅酶A等的相对分子质量都小于1,000道尔顿,因此这些分子都能自由通过外膜。外膜的通透性非常高,使得膜间隙中的环境几乎与胞质溶胶相似。但是它有两个重要的作用:一是建立了膜间隙,有利于建立电化学梯度;第二是外膜含有一些特殊的酶类,如参与色氨酸降解、脂肪酸链延伸的酶,表明外膜不仅参与膜磷脂的合成,同时对那些将在线粒体基质中进行彻底氧化的物质先行初步分解。外膜上含有单胺氧化酶(monoamineoxidase),该酶是外膜的标志酶,这种酶能够终止胺神经递质,如降肾上腺素和多巴胺的作用。,亚基旋转的离体培养证明,目前已经可以在光学显微镜下观察到F1中亚基的旋转运动(下图),但现在还没有直接的证据显示在F0中有某些亚基作旋转运动。实验中对F1进行人工改造,使之带上组氨酸(每个亚基一个),由于组氨酸能够同覆盖有金属还原剂(Ni)的玻片结合,因此可使F1固定到这种玻片上。通过人工的方法将结合上一条荧光标记的肌动蛋白纤维,然后在供给ATP的情况下用荧光显微镜观察亚基的转动。,化学渗透假说,:该学说的主要内容包括:电子传递从NADH开始,复合物将还原型的NADH氧化,释放出的两个电子和一个H+质子被NADH脱氢酶上的黄素单核苷酸(FMN)接受,同时从基质中摄取一个H+将FMN还原成FMNH2,NADH被氧化成NAD+重新进入TCA循环;FMNH2将一对H+质子传递到膜间隙,同时将一对电子经铁硫蛋白(FeS)传递给Q池中的两个辅酶Q;两个辅酶Q得到电子后从基质中摄取两个H+被还原成两个半醌(QH);醌在内膜中通过扩散进行穿膜循环(醌循环),两个半醌各从细胞色素b获得一个电子,并从基质中再摄取两个H+质子,形成两个全醌(QH2);当全醌扩散到内膜外侧时,便把两个电子传递给细胞色素c1,并向膜间隙释放一对H+质子,本身又被氧化成半醌;当半醌扩散到接近细胞色素b时,将携带的另两个电子传递给细胞色素b,并又向膜间隙释放一对H+,细胞色素b的一对电子又回到醌循环;细胞色素c1将接受的两个电子经细胞色素c和细胞色素氧化酶传递给氧,将氧还原成H2O;一对电子经呼吸链传递到氧时,共将基质中3对H+泵到膜间隙,从而使膜间隙的H+浓度高于基质,因而在内膜的两侧形成了电化学梯度。这种电化学梯度可驱动H+通过ATP合酶复合物进入基质,每通过2个H+可产生1个ATP。概括起来.在呼吸链进行的电子传递和质子的传递过程中,每传递一对电子,共传递10个质子,其中2个用于合成水,8个被传递到线粒体膜间隙建立质子梯度。,克山病,克山病(Keshandisease)是一种地方性心肌病(endemiccardiomyopathy)。1935年首先流行于黑龙江省克山县,当时对该病的本质认识不清,遂以此地名来命名,一直沿用至今。本病主要流行于我国东北、西北、华北及西南一带交通不便的山区或丘陵地带。病理学上以心肌的变性、坏死及修复后形成瘢痕为特点。临床上常有急性或慢性心功能不全表现。病变本病的病变主要在心肌,可出现严重的变性、坏死及瘢痕形成。骨骼肌亦可有轻度变性或小灶状坏死。(患克山病而半身瘫痪的彝族儿童),外被,叶绿体外被由双层膜组成,膜间为1020nm的膜间隙。外膜的渗透性大,如核苷、无机磷、蔗糖等许多细胞质中的营养分子可自由进入膜间隙。内膜对通过物质的选择性很强,CO2、O2、Pi、H2O、磷酸甘油酸、丙糖磷酸,双羧酸和双羧酸氨基酸可以透过内膜,ADP、ATP已糖磷酸,葡萄糖及果糖等透过内膜较慢。蔗糖、C5糖双磷酸酯,C糖磷酸酯,NADP+及焦磷酸不能透过内膜,需要特殊的转运体(translator)才能通过内膜。,类囊体,是单层膜围成的扁平小囊,沿叶绿体的长轴平行排列。膜上含有光合色素和电子传递链组分,又称光合膜。许多类囊体象圆盘一样叠在一起,称为基粒,组成基粒的类囊体,叫做基粒类囊体,构成内膜系统的基粒片层(granalamella)。基粒直径约0.250.8m,由10100个类囊体组成。每个叶绿体中约有4060个基粒。贯穿在两个或两个以上基粒之间的没有发生垛叠的类囊体称为基质类囊体,它们形成了内膜系统的基质片层(stromalamella)。由于相邻基粒经网管状或扁平状基质类囊体相联结,全部类囊体实质上是一个相互贯通的封闭系统。类囊体做为单独一个封闭膜囊的原始概念已失去原来的意义,它所表示的仅仅是叶绿体切面的平面形态。类囊体膜的主要成分是蛋白质和脂类(60:40),脂类中的脂肪酸主要是不饱含脂肪酸(约87%),具有较高的流动性。光能向化学能的转化是在类囊体上进行的,因此类囊体膜亦称光合膜,类囊体膜的内在蛋白主要有细胞色素b6/f复合体、质体醌(PQ)、质体蓝素(PC)、铁氧化还原蛋白、黄素蛋白、光系统、光系统复合物等。,基质,是内膜与类囊体之间的空间,主要成分包括:碳同化相关的酶类:如RuBP羧化酶占基质可溶性蛋白总量的60%。叶绿体DNA、蛋白质合成体系:如,ctDNA、各类RNA、核糖体等。一些颗粒成分:如淀粉粒、质体小球和植物铁蛋白等。,光合色素和电子传递链组分,1光合色素类囊体中含两类色素:叶绿素(下图)和橙黄色的类胡萝卜素,通常叶绿素和类胡萝卜素的比例约为3:1,chla与chlb也约为3:l,全部叶绿素和几乎所有的类胡萝卜素都包埋在类囊体膜中,与蛋白质以非共价键结合,一条肽链上可以结合若干色素分子,各色素分子间的距离和取向固定,有利于能量传递。,2集光复合体(lightharvestingcomplex)由大约200个叶绿素分子和一些肽链构成(下图)。大部分色素分子起捕获光能的作用,并将光能以诱导共振方式传递到反应中心色素。因此这些色素被称为天线色素。叶绿体中全部叶绿素b和大部分叶绿素a都是天线色素。另外类胡萝卜素和叶黄素分子也起捕获光能的作用,叫做辅助色素。,天线色素分子,共振传递能量,3光系统(PS)吸收高峰为波长680nm处,又称P680。至少包括12条多肽链。位于基粒于基质非接触区域的类囊体膜上。包括一个集光复合体(light-hawestingcomnplex,LHC)、一个反应中心和一个含锰原子的放氧的复合体(oxygenevolvingcomplex)。D1和D2为两条核心肽链,结合中心色素P680、去镁叶绿素(pheophytin)及质体醌(plastoquinone)。4细胞色素b6/f复合体(cytb6/fcomplex)可能以二聚体形成存在,每个单体含有四个不同的亚基。细胞色素b6(b563)、细胞色素f、铁硫蛋白、以及亚基(被认为是质体醌的结合蛋白)。,5光系统(PSI)能被波长700nm的光激发,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 森林水文学课件
- 电力系统职业技能鉴定考试试题及答案
- 2025年市场营销经理职位招聘笔试题及解题策略
- 2025年篮球裁判规则题库及答案
- 2025年轻微型无人机考试题库含完整答案详解【易错题】
- 2025年电力行业信息技术部招聘面试全攻略及模拟题答案
- 2025年初级无损检测员磁粉-MT-模拟面试题及答案详解
- 2025年市场营销经理专业技能考核预测题
- 洪水公务员面试题目及答案
- 2025注册验船师考试(C级船舶检验专业综合能力)自测试题及答案一
- 2025年幼儿园教师大班数学工作总结样本(3篇)
- 2025年毕节市农业发展集团有限公司招聘考试笔试试题(含答案)
- 供应链安全管理知识培训课件
- 牛鼻子引流技术
- (2025年标准)班组承包协议书
- 2025国家能源投资集团有限责任公司审计中心社会招聘12人笔试参考题库附带答案详解(10套)
- 2025年全国I卷高考地理试题和答案
- 深圳微利房管理办法
- 生产安全会议纪要
- 护理文书书写PDCA案例
- 制作瓷器培训课件
评论
0/150
提交评论