




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
整式的乘除全章复习与巩固(提高)【学习目标】1. 掌握幂的运算性质,并能运用它们熟练地进行运算;掌握单项式乘(或除以)单项式、多项式乘(或除以)单项式以及多项式乘多项式的法则,并运用它们进行运算;2. 会推导乘法公式(平方差公式和完全平方公式),了解公式的几何意义,能利用公式进行乘法运算;3. 掌握整式的加、减、乘、除、乘方的较简单的混合运算,并能灵活地运用运算律与乘法公式简化运算;【知识网络】【要点梳理】要点一、幂的运算1.同底数幂的乘法:(为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方: (为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方: (为正整数);积的乘方,等于各因数乘方的积.4.同底数幂的除法:(0, 为正整数,并且).同底数幂相除,底数不变,指数相减.5.零指数幂:即任何不等于零的数的零次方等于1.6.负指数幂:(0,是正整数). 要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.要点二、整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即(都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“”“”号是性质符号,单项式乘以多项式各项的结果,要用“”连结,最后写成省略加号的代数和的形式根据多项式的乘法,能得出一个应用比较广泛的公式:.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:要点三、乘法公式1.平方差公式:两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,既可以是具体数字,也可以是单项式或多项式. 平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2. 完全平方公式:;两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.【典型例题】类型一、幂的运算1、(2015春南长)已知,求x+2y的值【思路点拨】根据原题所给的条件,列方程组求出x、y的值,然后代入求解【答案与解析】解:根据,列方程得:,解得:,则x+2y=11【总结升华】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则2、(1)已知,比较的大小.(2)比较大小。【答案与解析】解:(1), 所以; (2),所以【总结升华】(1)转化为同指数不同底数的情况进行比较,指数转化为6;(2)转化成比较同底数不同指数,底数转化为3.类型二、整式的乘除法运算【高清课堂 整式的乘除与因式分解单元复习 例2】3、要使的结果中不含的一次项,则等于( ) A.0 B.1 C.2 D.3【答案】D;【解析】先进行化简,得:,要使结果不含的一次项,则的一次项系数为0,即:0.所以.【总结升华】代数式中不含某项,就是指这一项的系数为0.举一反三:【变式】若的乘积中不含的一次项,则等于_【答案】;类型三、乘法公式4、计算:(1);(2)【思路点拨】(1)中可以将两因式变成与的和差.(2)中可将两因式变成与的和差.【答案与解析】 解:(1)原式 (2)原式 .【总结升华】(1)在乘法计算中,经常同时应用平方差公式和完全平方公式(2)当两个因式中的项非常接近时,有时通过拆项用平方差公式会达到意想不到的效果 举一反三:【变式】(2015春常州期中)计算:(x+2y+z)(x+2yz)【答案】5、已知,求代数式的值.【思路点拨】将原式配方,变成几个非负数的和为零的形式,这样就能解出.【答案与解析】解: 所以所以.【总结升华】一个方程,三个未知数,从理论上不可能解出方程,尝试将原式配方过后就能得出正确答案.举一反三:【变式】配方,求_.【答案】解:原式所以,解得所以.6、求证:无论为何有理数,多项式的值恒为正数【答案与解析】解:原式 所以多项式的值恒为正数.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省江山市2025年上半年事业单位公开遴选试题含答案分析
- 河北省新乐市2025年上半年事业单位公开遴选试题含答案分析
- 2025大连业主房产支付担保办理及违约责任合同
- 2025版医疗废物处理设备采购合同范本
- 2025年车辆租赁及维修服务三方协议书
- 2025定向委培研究生校企合作人才培养协议
- 2025版土方车运输与道路拓宽施工合同
- 2025年邱滢与周九离婚协议及子女抚养协议
- 2025版商标注册申请与海外市场拓展合同
- 2025年度地质勘探测量劳务合同书
- 高中生物必修二试卷加详细答案
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- JTT 203-2014 公路水泥混凝土路面接缝材料
- 普通地质学完整版课件
- 电梯维护保养管理制度
- 第1课 社会主义在中国的确立与探索(导学案)-【中职专用】高一思想政治《中国特色社会主义》(高教版2023·基础模块)
- 第1课《时代精神的精华》第2框《马克思主义哲学指引人生路》-【中职专用】《哲学与人生》同步课堂课件
- 岭南版八年级美术(上下册)教案(综合版)
- 综合医院心电图机使用过程中突发意外情况应急预案
- 头发头皮的养护培训课件
- 直流电磁继电器
评论
0/150
提交评论