结构力学英文课件 Chapter7.ppt_第1页
结构力学英文课件 Chapter7.ppt_第2页
结构力学英文课件 Chapter7.ppt_第3页
结构力学英文课件 Chapter7.ppt_第4页
结构力学英文课件 Chapter7.ppt_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chapter7Slope-DeflectionMethod,Section1Introduction,Slope-deflectionmethod(orsimplythedisplacementmethod)isanothermethodtoanalyzethestaticallyindeterminatestructure.Inthelastchapter(forcemethod),theunknownsofprimarystructureareforces.Afterobtainingunknownforce,displacementofthestructurecanbesolved.Infact,thedisplacement(ordeflection)canbeproducedundertheactionofexternalloads,sothedisplacementsofthestructurehaveinherentrelationtotheexternalload.Thatistosay,thedisplacementsofthestructurecanbealsousedasprimaryunknowns.Thismethodisreferredtoasdisplacementmethod.Rotationdisplacementandtranslationdisplacementaregeneralizeddisplacement.Sothedisplacementmethodisalsocalledslope-deflectionmethod.,EX.,Notice:(1)Theflexuraldeformationoftheflexuralmembersintheframeistakenintoaccount,buttheshearingandaxialdeformationsofwhichareneglected.(2)Straightmembersofconstantsectionbetweenthetwoendsareconsidered.,Section2Determineunknownsandprimarystructure,1、Primaryunknown(1)、Rotationdisplacementsunknown(2)、Translationunknown,A,B,C,D,B,C,B,C,2、Basicassumptions(1)、Smalldisplacementissupposed.(2)、Axialforceandshearingforcearedisregarded.,3、Howtodecidethenumberofprimaryunknowns,(1)、Thenumberofrotationdisplacements()isequaltothenumberofrigidjoints.(2)、Thenumberoftranslationunknowns()Themethodofdeterminingthetranslationunknownsisasfollowing.Allrigidjoints(includingfixedsupports)arechangedintohinges;calculatedegreeoffreedomofthenewstructure.Thedegreeoffreedomofthenewstructureisequaltothenumberoftranslationunknownoftheoriginalstructure.,Howtodecidethenumberofprimaryunknowns,Thereare4rigidjointsinFig.Sotherotationdisplacementunknownsare4.,Fig(a)ischangedintoFig(b),degreeoffreedomofFig(b):sotranslationunknownsoforiginalstructureare2.,4,Degreeofindeterminacy,Thedegreeofindeterminacy(n)is:,5,Primarystructure,Whenindeterminatestructureisanalyzedbyusingdisplacementmethod,everymemberisconsideredasastaticallyindeterminatebeamwithsinglespan.Sotheprimarystructureisthateverymemberischangedintoanindeterminatebeamwithsinglespan.Arigidarmisaddedateveryrigidjointtopreventrotationofthejoint(butcannotpreventtranslation)atthesametime,alinkisaddedatjointwheretranslationispossible.Thelinkpreventstranslationofthejoint.Afterthese,thestructureisprimarystructure.,EX:,Finddegreeofindeterminacy,setupprimarystructure:,Section3Slope-Deflectionequation,Allmembersinstructureareconsideredasabeamwithasinglespan,thebeamisfixedattwoends.Letsdiscusstheinternalforce-bendingmomentattwoendsundertheactionsofrotationandtranslationdisplacementsandexternalloads.Fig.showsabeam,itisfixedattwoends.EIisconstant.ThebeamissubjectedtoaforceP,rotationatendAis,androtationatendBis,thetranslationatendBrelativeendAis,bendingmomentsatendA,Baredesired.,Solution:letsolveitusingforcemethod.(1)Theprimarystructure(2)Canonicalequations,Because,Solution:(3)Determinecoefficients(GraphMultiplication),linearrigidity,let,Wehave,Wehave,isreferredtoas“slope-deflectionequation”,iforiginalstructureisthatoneendisfixedandtheotherendishinged,itsslope-deflectioncanbededuced.SupposeendBishinged.,Thefollowingsignisestablished:Bendingmomentclockwiseispositiverelativetoendofmember;counterclockwiseisnegativerelativetorigidjointorsupport.,Shearingforceclockwiseispositiveaboutisolatingbody(freebody).,Rotationangleclockwiseispositive,Thefollowingsignisestablished:Translationclockwiserotationofthewholememberispositive.,Theendmoment,endshearingforceandendreactionarelistedintableforconvenience.,Section4AnalysisofindeterminateStructureusingdisplacementmethod,Solution:(1)Itisindeterminatetotheseconddegree(2)PrimaryStructure:,(3)Canonicalequations,Inordertosolvethisproblem,wemustfindoutthedifferencesbetweenoriginalstructureandprimarystructureatfirst.,(a)Standingonthesideofdeformation,joint1cantrotate(Z1)duetorigidarm;translation(Z2)atjoint2cantexitduetolinkintheprimarystructure.But,Z1,Z2areexistencesinoriginalstructure.Inordertoeliminatethedifference,arotationZ1andtranslationZ2canbeenforcedatjoint1andjoint2respectivelyinprimarystructure.,(b)Standingonthesideofinternalforces.Z1,Z2areenforcedinprimarystructure.Thereactionmoment(R1)andreactionforce(R2)mustbeproducedinrigidjoint1andthelinkrespectively.But,R1,R2arenotexistencesinoriginalstructure.So,theproblemisthatthereactionsR1,R2are0undertheactionsofZ1,Z2andexternalloadsintheprimarystructure.Sothecanonicalequationscanbeexpressedas:,denotereactionsdueto,respectivelyin.Itiscalledcanonicalequations.Theequationsmean:Allattachedreactionsinaddedarmsandlinksare0undertheactionsofrotations,translationsandexternalloadsinprimarystructure.Iftherearenunknownsinstructure,thecanonicalequationscanbewrittenas:,arecalledmaincoefficients.arecalledsecondarycoefficients.(3)Calculate,Therearetwotypescoefficientintheequations,onetypeisreactionmoments,andtheotherisreactionforce.Inordertoworkoutthecoefficients,thetableofendmomentsandreactionsisused.DrawMdiagramsduetoexternalforcesandrespectively.Thecoefficientscanbeobtainedfromequilibriumconditionsoffreebody,whichisfromthebendingmomentdiagrams.,(4)DrawtotalM,StepstosoluteProblem:P270,11-3(d)(1)todeterminethedegreeofindeterminacy;(2)tosetupprimarystructure;(3)towritecanonicalequations;(4)todrawMp,Mi;(5)to

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论