




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chapter7Slope-DeflectionMethod,Section1Introduction,Slope-deflectionmethod(orsimplythedisplacementmethod)isanothermethodtoanalyzethestaticallyindeterminatestructure.Inthelastchapter(forcemethod),theunknownsofprimarystructureareforces.Afterobtainingunknownforce,displacementofthestructurecanbesolved.Infact,thedisplacement(ordeflection)canbeproducedundertheactionofexternalloads,sothedisplacementsofthestructurehaveinherentrelationtotheexternalload.Thatistosay,thedisplacementsofthestructurecanbealsousedasprimaryunknowns.Thismethodisreferredtoasdisplacementmethod.Rotationdisplacementandtranslationdisplacementaregeneralizeddisplacement.Sothedisplacementmethodisalsocalledslope-deflectionmethod.,EX.,Notice:(1)Theflexuraldeformationoftheflexuralmembersintheframeistakenintoaccount,buttheshearingandaxialdeformationsofwhichareneglected.(2)Straightmembersofconstantsectionbetweenthetwoendsareconsidered.,Section2Determineunknownsandprimarystructure,1、Primaryunknown(1)、Rotationdisplacementsunknown(2)、Translationunknown,A,B,C,D,B,C,B,C,2、Basicassumptions(1)、Smalldisplacementissupposed.(2)、Axialforceandshearingforcearedisregarded.,3、Howtodecidethenumberofprimaryunknowns,(1)、Thenumberofrotationdisplacements()isequaltothenumberofrigidjoints.(2)、Thenumberoftranslationunknowns()Themethodofdeterminingthetranslationunknownsisasfollowing.Allrigidjoints(includingfixedsupports)arechangedintohinges;calculatedegreeoffreedomofthenewstructure.Thedegreeoffreedomofthenewstructureisequaltothenumberoftranslationunknownoftheoriginalstructure.,Howtodecidethenumberofprimaryunknowns,Thereare4rigidjointsinFig.Sotherotationdisplacementunknownsare4.,Fig(a)ischangedintoFig(b),degreeoffreedomofFig(b):sotranslationunknownsoforiginalstructureare2.,4,Degreeofindeterminacy,Thedegreeofindeterminacy(n)is:,5,Primarystructure,Whenindeterminatestructureisanalyzedbyusingdisplacementmethod,everymemberisconsideredasastaticallyindeterminatebeamwithsinglespan.Sotheprimarystructureisthateverymemberischangedintoanindeterminatebeamwithsinglespan.Arigidarmisaddedateveryrigidjointtopreventrotationofthejoint(butcannotpreventtranslation)atthesametime,alinkisaddedatjointwheretranslationispossible.Thelinkpreventstranslationofthejoint.Afterthese,thestructureisprimarystructure.,EX:,Finddegreeofindeterminacy,setupprimarystructure:,Section3Slope-Deflectionequation,Allmembersinstructureareconsideredasabeamwithasinglespan,thebeamisfixedattwoends.Letsdiscusstheinternalforce-bendingmomentattwoendsundertheactionsofrotationandtranslationdisplacementsandexternalloads.Fig.showsabeam,itisfixedattwoends.EIisconstant.ThebeamissubjectedtoaforceP,rotationatendAis,androtationatendBis,thetranslationatendBrelativeendAis,bendingmomentsatendA,Baredesired.,Solution:letsolveitusingforcemethod.(1)Theprimarystructure(2)Canonicalequations,Because,Solution:(3)Determinecoefficients(GraphMultiplication),linearrigidity,let,Wehave,Wehave,isreferredtoas“slope-deflectionequation”,iforiginalstructureisthatoneendisfixedandtheotherendishinged,itsslope-deflectioncanbededuced.SupposeendBishinged.,Thefollowingsignisestablished:Bendingmomentclockwiseispositiverelativetoendofmember;counterclockwiseisnegativerelativetorigidjointorsupport.,Shearingforceclockwiseispositiveaboutisolatingbody(freebody).,Rotationangleclockwiseispositive,Thefollowingsignisestablished:Translationclockwiserotationofthewholememberispositive.,Theendmoment,endshearingforceandendreactionarelistedintableforconvenience.,Section4AnalysisofindeterminateStructureusingdisplacementmethod,Solution:(1)Itisindeterminatetotheseconddegree(2)PrimaryStructure:,(3)Canonicalequations,Inordertosolvethisproblem,wemustfindoutthedifferencesbetweenoriginalstructureandprimarystructureatfirst.,(a)Standingonthesideofdeformation,joint1cantrotate(Z1)duetorigidarm;translation(Z2)atjoint2cantexitduetolinkintheprimarystructure.But,Z1,Z2areexistencesinoriginalstructure.Inordertoeliminatethedifference,arotationZ1andtranslationZ2canbeenforcedatjoint1andjoint2respectivelyinprimarystructure.,(b)Standingonthesideofinternalforces.Z1,Z2areenforcedinprimarystructure.Thereactionmoment(R1)andreactionforce(R2)mustbeproducedinrigidjoint1andthelinkrespectively.But,R1,R2arenotexistencesinoriginalstructure.So,theproblemisthatthereactionsR1,R2are0undertheactionsofZ1,Z2andexternalloadsintheprimarystructure.Sothecanonicalequationscanbeexpressedas:,denotereactionsdueto,respectivelyin.Itiscalledcanonicalequations.Theequationsmean:Allattachedreactionsinaddedarmsandlinksare0undertheactionsofrotations,translationsandexternalloadsinprimarystructure.Iftherearenunknownsinstructure,thecanonicalequationscanbewrittenas:,arecalledmaincoefficients.arecalledsecondarycoefficients.(3)Calculate,Therearetwotypescoefficientintheequations,onetypeisreactionmoments,andtheotherisreactionforce.Inordertoworkoutthecoefficients,thetableofendmomentsandreactionsisused.DrawMdiagramsduetoexternalforcesandrespectively.Thecoefficientscanbeobtainedfromequilibriumconditionsoffreebody,whichisfromthebendingmomentdiagrams.,(4)DrawtotalM,StepstosoluteProblem:P270,11-3(d)(1)todeterminethedegreeofindeterminacy;(2)tosetupprimarystructure;(3)towritecanonicalequations;(4)todrawMp,Mi;(5)to
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 销售网上面试题库精 编版:全面掌握销售技巧
- 保险与家庭理财宣讲
- 履带式工程机械行走系介绍2讲课文档
- 《第5课北极星不动的秘密课件》
- 三清招聘面试必 备题库:新面试题目深度解读
- 年会团建活动策划方案
- 清廉医院建设指导
- 2026届江西省抚州市临川第一中学化学高一上期末学业水平测试试题含解析
- 心脏起搏器基础与应用
- 文明城市创建讲解
- 浪潮iqt在线测评题及答案
- HG∕T 4693-2014 工业氟硅酸钾
- 新初一分班考试英语试题
- 电科院:储能构网控制及并网测试
- 【伊利乳业精益成本管理问题及对策探析9500字】
- 住院患者用药教育制度
- 2024届八省八校T8联考高三第二次学业质量评价 英语试题
- 房地产公司工程管理质量保证体系已改样本
- T-SZHW 001-2024 深圳市城市管家服务管理规范(试行)
- 五年级上册小数乘除口算练习400题及答案
- 一滴血检测仪培训教程(完全版)课件
评论
0/150
提交评论