已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,IntroductiontoKalmanFilters,MichaelWilliams5June2003,2,Overview,TheProblemWhydoweneedKalmanFilters?WhatisaKalmanFilter?ConceptualOverviewTheTheoryofKalmanFilterSimpleExample,3,TheProblem,SystemstatecannotbemeasureddirectlyNeedtoestimate“optimally”frommeasurements,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState(desiredbutnotknown),ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,4,WhatisaKalmanFilter?,RecursivedataprocessingalgorithmGeneratesoptimalestimateofdesiredquantitiesgiventhesetofmeasurementsOptimal?ForlinearsystemandwhiteGaussianerrors,Kalmanfilteris“best”estimatebasedonallpreviousmeasurementsFornon-linearsystemoptimalityisqualifiedRecursive?Doesntneedtostoreallpreviousmeasurementsandreprocessalldataeachtimestep,5,ConceptualOverview,SimpleexampletomotivatetheworkingsoftheKalmanFilterTheoreticalJustificationtocomelaterfornowjustfocusontheconceptImportant:PredictionandCorrection,6,ConceptualOverview,Lostonthe1-dimensionallinePositiony(t)AssumeGaussiandistributedmeasurements,y,7,ConceptualOverview,SextantMeasurementatt1:Mean=z1andVariance=z1Optimalestimateofpositionis:(t1)=z1Varianceoferrorinestimate:2x(t1)=2z1Boatinsamepositionattimet2-Predictedpositionisz1,8,ConceptualOverview,Sowehavetheprediction-(t2)GPSMeasurementatt2:Mean=z2andVariance=z2Needtocorrectthepredictionduetomeasurementtoget(t2)Closertomoretrustedmeasurementlinearinterpolation?,prediction-(t2),measurementz(t2),9,ConceptualOverview,CorrectedmeanisthenewoptimalestimateofpositionNewvarianceissmallerthaneitheroftheprevioustwovariances,measurementz(t2),correctedoptimalestimate(t2),prediction-(t2),10,ConceptualOverview,Lessonssofar:,Makepredictionbasedonpreviousdata-,-,Takemeasurementzk,z,Optimalestimate()=Prediction+(KalmanGain)*(Measurement-Prediction),Varianceofestimate=Varianceofprediction*(1KalmanGain),11,ConceptualOverview,Attimet3,boatmoveswithvelocitydy/dt=uNaveapproach:ShiftprobabilitytotherighttopredictThiswouldworkifweknewthevelocityexactly(perfectmodel),(t2),NavePrediction-(t3),12,ConceptualOverview,BettertoassumeimperfectmodelbyaddingGaussiannoisedy/dt=u+wDistributionforpredictionmovesandspreadsout,(t2),NavePrediction-(t3),Prediction-(t3),13,ConceptualOverview,Nowwetakeameasurementatt3NeedtoonceagaincorrectthepredictionSameasbefore,Prediction-(t3),Measurementz(t3),Correctedoptimalestimate(t3),14,ConceptualOverview,Lessonslearntfromconceptualoverview:Initialconditions(k-1andk-1)Prediction(-k,-k)Useinitialconditionsandmodel(eg.constantvelocity)tomakepredictionMeasurement(zk)TakemeasurementCorrection(k,k)UsemeasurementtocorrectpredictionbyblendingpredictionandresidualalwaysacaseofmergingonlytwoGaussiansOptimalestimatewithsmallervariance,15,TheoreticalBasis,Processtobeestimated:,yk=Ayk-1+Buk+wk-1,zk=Hyk+vk,ProcessNoise(w)withcovarianceQ,MeasurementNoise(v)withcovarianceR,KalmanFilter,Predicted:-kisestimatebasedonmeasurementsatprevioustime-steps,k=-k+K(zk-H-k),Corrected:khasadditionalinformationthemeasurementattimek,K=P-kHT(HP-kHT+R)-1,-k=Ayk-1+Buk,P-k=APk-1AT+Q,Pk=(I-KH)P-k,16,BlendingFactor,Ifwearesureaboutmeasurements:Measurementerrorcovariance(R)decreasestozeroKdecreasesandweightsresidualmoreheavilythanpredictionIfwearesureaboutpredictionPredictionerrorcovarianceP-kdecreasestozeroKincreasesandweightspredictionmoreheavilythanresidual,17,TheoreticalBasis,18,QuickExampleConstantModel,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState,ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,19,QuickExampleConstantModel,Prediction,k=-k+K(zk-H-k),Correction,K=P-k(P-k+R)-1,-k=yk-1,P-k=Pk-1,Pk=(I-K)P-k,20,QuickExampleConstantModel,21,QuickExampleConstantModel,ConvergenceofErrorCovariance-Pk,22,QuickExampleConstantModel,LargervalueofRthemeasurementerrorcovariance(indicatespoorerqualityofmeasurements),Filterslowertobelievemeasurementsslowerconvergence,23,References,Kalman,R.E.1960.“ANewApproachtoLinearFilteringandPredictionProblems”,TransactionoftheASME-JournalofBa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- TCECS 178-2023 气水冲洗滤池整体浇筑滤板及可调式滤头应用技术规程
- DLT 5478-2021 20kV及以下配电网工程建设预算项目划分导则
- 南充一诊英语试卷及答案
- 轨道交通运维工程师面试题及答案
- 公务员面试南京面试题及答案
- 活动策划校招面试题及答案
- 恒瑞医药校招真题及答案
- 海信集团招聘试题及答案
- 国机集团校招试题及答案
- 公务员考试思维策略试题及答案
- 心房颤动诊疗中国专家共识
- 物业管理耗材采购清单及限价
- 华润物业住宅管理办法
- 契税法宣传课件
- 2025至2030年中国煤矿机器人行业市场现状分析及发展前景研判报告
- 电商公司客服部管理制度
- 2025年国际注册内部审计师(CIA)考试《内部审计基础》新版真题卷
- 借款合同标准文本pdf
- 2025年英语四级考试试卷及答案
- 处方药学类试题及答案
- 机房运维考试试题及答案
评论
0/150
提交评论