




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,IntroductiontoKalmanFilters,MichaelWilliams5June2003,2,Overview,TheProblemWhydoweneedKalmanFilters?WhatisaKalmanFilter?ConceptualOverviewTheTheoryofKalmanFilterSimpleExample,3,TheProblem,SystemstatecannotbemeasureddirectlyNeedtoestimate“optimally”frommeasurements,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState(desiredbutnotknown),ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,4,WhatisaKalmanFilter?,RecursivedataprocessingalgorithmGeneratesoptimalestimateofdesiredquantitiesgiventhesetofmeasurementsOptimal?ForlinearsystemandwhiteGaussianerrors,Kalmanfilteris“best”estimatebasedonallpreviousmeasurementsFornon-linearsystemoptimalityisqualifiedRecursive?Doesntneedtostoreallpreviousmeasurementsandreprocessalldataeachtimestep,5,ConceptualOverview,SimpleexampletomotivatetheworkingsoftheKalmanFilterTheoreticalJustificationtocomelaterfornowjustfocusontheconceptImportant:PredictionandCorrection,6,ConceptualOverview,Lostonthe1-dimensionallinePositiony(t)AssumeGaussiandistributedmeasurements,y,7,ConceptualOverview,SextantMeasurementatt1:Mean=z1andVariance=z1Optimalestimateofpositionis:(t1)=z1Varianceoferrorinestimate:2x(t1)=2z1Boatinsamepositionattimet2-Predictedpositionisz1,8,ConceptualOverview,Sowehavetheprediction-(t2)GPSMeasurementatt2:Mean=z2andVariance=z2Needtocorrectthepredictionduetomeasurementtoget(t2)Closertomoretrustedmeasurementlinearinterpolation?,prediction-(t2),measurementz(t2),9,ConceptualOverview,CorrectedmeanisthenewoptimalestimateofpositionNewvarianceissmallerthaneitheroftheprevioustwovariances,measurementz(t2),correctedoptimalestimate(t2),prediction-(t2),10,ConceptualOverview,Lessonssofar:,Makepredictionbasedonpreviousdata-,-,Takemeasurementzk,z,Optimalestimate()=Prediction+(KalmanGain)*(Measurement-Prediction),Varianceofestimate=Varianceofprediction*(1KalmanGain),11,ConceptualOverview,Attimet3,boatmoveswithvelocitydy/dt=uNaveapproach:ShiftprobabilitytotherighttopredictThiswouldworkifweknewthevelocityexactly(perfectmodel),(t2),NavePrediction-(t3),12,ConceptualOverview,BettertoassumeimperfectmodelbyaddingGaussiannoisedy/dt=u+wDistributionforpredictionmovesandspreadsout,(t2),NavePrediction-(t3),Prediction-(t3),13,ConceptualOverview,Nowwetakeameasurementatt3NeedtoonceagaincorrectthepredictionSameasbefore,Prediction-(t3),Measurementz(t3),Correctedoptimalestimate(t3),14,ConceptualOverview,Lessonslearntfromconceptualoverview:Initialconditions(k-1andk-1)Prediction(-k,-k)Useinitialconditionsandmodel(eg.constantvelocity)tomakepredictionMeasurement(zk)TakemeasurementCorrection(k,k)UsemeasurementtocorrectpredictionbyblendingpredictionandresidualalwaysacaseofmergingonlytwoGaussiansOptimalestimatewithsmallervariance,15,TheoreticalBasis,Processtobeestimated:,yk=Ayk-1+Buk+wk-1,zk=Hyk+vk,ProcessNoise(w)withcovarianceQ,MeasurementNoise(v)withcovarianceR,KalmanFilter,Predicted:-kisestimatebasedonmeasurementsatprevioustime-steps,k=-k+K(zk-H-k),Corrected:khasadditionalinformationthemeasurementattimek,K=P-kHT(HP-kHT+R)-1,-k=Ayk-1+Buk,P-k=APk-1AT+Q,Pk=(I-KH)P-k,16,BlendingFactor,Ifwearesureaboutmeasurements:Measurementerrorcovariance(R)decreasestozeroKdecreasesandweightsresidualmoreheavilythanpredictionIfwearesureaboutpredictionPredictionerrorcovarianceP-kdecreasestozeroKincreasesandweightspredictionmoreheavilythanresidual,17,TheoreticalBasis,18,QuickExampleConstantModel,MeasuringDevices,Estimator,MeasurementErrorSources,SystemState,ExternalControls,ObservedMeasurements,OptimalEstimateofSystemState,SystemErrorSources,System,BlackBox,19,QuickExampleConstantModel,Prediction,k=-k+K(zk-H-k),Correction,K=P-k(P-k+R)-1,-k=yk-1,P-k=Pk-1,Pk=(I-K)P-k,20,QuickExampleConstantModel,21,QuickExampleConstantModel,ConvergenceofErrorCovariance-Pk,22,QuickExampleConstantModel,LargervalueofRthemeasurementerrorcovariance(indicatespoorerqualityofmeasurements),Filterslowertobelievemeasurementsslowerconvergence,23,References,Kalman,R.E.1960.“ANewApproachtoLinearFilteringandPredictionProblems”,TransactionoftheASME-JournalofBa
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 四川安全生产考试试题及答案
- 2025年度北京市起重机械作业押题练习试题A卷含答案
- 2025年护士核心制度岗位职责试题(附答案)
- 宠物食品定期配送创新创业项目商业计划书
- 科目一情感测试题及答案
- 宠物疫苗接种创新创业项目商业计划书
- 家庭财产托管服务创新创业项目商业计划书
- 公务员面试真题及答案
- 果蔬茶亲子互动乐园创新创业项目商业计划书
- 水资源循环利用示范农场创新创业项目商业计划书
- 入院患者评估管理制度
- 2025企业安全管理人员安全培训考试试题及参考答案【完整版】
- 春考模拟试题及答案广东
- 消防装备技师题库
- 住院精神疾病患者攻击行为预防
- 15 青春之光(公开课一等奖创新教案)
- 城市轨道交通辅助系统的发展城轨车辆电气控制系统课件
- 腹腔镜操作标准化流程指南
- 输液空气的栓塞及预防
- 财务知识及财务分析培训
- 《化工设备设计原理与实例》课件
评论
0/150
提交评论