高三数学二轮复习研讨---解析几何复习策略课件_第1页
高三数学二轮复习研讨---解析几何复习策略课件_第2页
高三数学二轮复习研讨---解析几何复习策略课件_第3页
高三数学二轮复习研讨---解析几何复习策略课件_第4页
高三数学二轮复习研讨---解析几何复习策略课件_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

解析几何复习策略,主要内容:,1、近三年高考圆锥曲线试题回顾及认识;,2、学生存在问题、难点分析;,3、圆锥曲线试题突破策略;,(1)程序化是解决圆锥曲线试题的基本方法;,(2)简化运算的基本途径及思路;,(3)向量条件的灵活应用;,(4)几类典型试题的解决策略;,4、圆锥曲线三轮复习策略;,2013年理科试题,2014年理科试题,2015年理科试题,同2013理科,同2013理科,2013年文科试题,2014年文科试题,2015年文科,1、从连续三年高考看圆锥曲线命题的变化趋势及认识:,(1)圆锥曲线部分“两小一大”的分布特点在高考中比较稳定;,(2)文理科客观题部分均体现了对圆锥曲线部分知识点及二级结论的考察,体现学生对知识点覆盖面的掌握程度及有关简化运算策略的应用;,2013年理科,二级结论:,结论:,抛物线焦点弦常用结论:,(3)文理科三个试题中主观题均未涉及双曲线部分,理科试卷中主观题以椭圆与抛物线为主;文科试卷连续五年主观题部分都与圆有关,文科主观题难度有所降低;,(4)不论客观题还是主观题,两条曲线简单拼凑的迹象比较明显,但对学生而言两条曲线的简单拼凑对基本量的考察是一个难点;,(5)圆锥曲线试题运算量逐渐降低。从我校学生的得分情况看,学生在客观题部分得分虽然名次靠前,但2015年高考圆锥曲线试题得分有所下降,而主观题部分学生的得分情况有所上升;,二、学生在圆锥曲线试题方面存在的主要问题:,1、条件的使用乱而无序;不能从前往后一个一个的使用条件,不能将每句话转化为数学符号;,2、条件的本质不能抓住:条件的内涵没有挖掘出来,人为的制造复杂;,3、化简变形没有方向;,4、典型试题方法不全;知识点(包括二级结论)不够扎实全面、范围问题、最值问题、定点定值问题、切线问题方法单一甚至没有方法;,5、运算能力非常欠缺;,运算出错根源分析:,求快心理+着急心理+草稿纸上乱写,6、解题信心严重不足;,7、书写混乱看不清楚;,(1)设椭圆方程:利用焦点或准线方程形式确定椭圆焦点所在的轴从,,利用待定系数法进而求出,1、直线和圆锥曲线问题的程序化策略,虑直线斜率不存在的情况;,三、圆锥曲线试题突破策略:,(3)若条件中涉及到两个交点,可设交点坐标,的一元二次方程,注意:对于直线和双曲线问题要重视对二次项系数的讨论.,(4)两个交点,(7)若条件中涉及到了弦长,则弦长公式为;,;,2、简化运算的途径及思路:,(1)利用定义判断动点的轨迹方程;,(2)利用定义构造焦点三角形建立基本量之间的等量关系;,(3)利用定义进行距离之间的转化求最值;,1、利用圆锥曲线的定义简化运算:,2、利用平面图形的几何性质简化运算;,(1)利用圆的几何性质简化运算;,(2)利用三角形内角平分线、中位线等性质简化运算;,(3)利用线线平行线段成比例等性质简化运算;,3、利用直线或曲线方程的设法简化运算;,(2)多条直线问题中设出关键直线方程达到简化运算的目的;,4、利用向量简化运算;,4、灵活应用向量条件,把握向量本质,力求减少运算量;,向量与圆锥曲线的共同属性位置关系和数量关系的研究决定了向量与圆锥曲线知识的综合,具体而言,就是在圆锥曲线试题中,往往部分关于位置和数量的条件用向量符号或向量语言来叙述,解题过程中,我们在讲究向量条件坐标化的同时有时会增加运算量或复杂程度,如何应用向量条件,向量条件的本质是什么是向量条件使用的关键,向量条件的使用可以分为以下几个层次:,(1)简单的向量条件坐标化:,对定比分点坐标公式的考察,坐标化的同时建立等量关系求解。,提炼:条件中涉及到直线与曲线(尤其是椭圆和双曲线)的两个交点,且另一点在直线上或曲线上,向量条件涉及的位置关系或数量关系不太明确,在联立方程的基础上通过向量条件坐标化得到未知量所在的等量关系(坐标之间的关系、斜率或截距的关系、曲线中基本量之间的关系),从而求解,(2)通过化简复杂的向量条件,明确向量条件隐含的位置关系或数量关系,提炼:具有相同起点的任意两个向量的和(系数相等)都可以用两个向量构成的三角形的中线向量表示,从而将复杂向量的运算转化为明确的位置关系或数量关系;同时直线与圆锥曲线相交弦的中点问题让我们联想到了中线向量。,(3)利用向量条件表达的位置关系和数量关系,结合平面图形的几何性质求解,分析:,既表达了三点F、P、Q的位置关系,也表达了两个向量之间的数量关系,故可用代数和几何两种思路求解,(4)利用向量知识解决圆锥曲线中的角的问题;,1、圆锥曲线的切线问题:,(1)圆的切线问题,五、几类典型试题方法探究:,(2)椭圆的切线问题:,(3)双曲线的切线问题:,(4)抛物线的切线问题:,抛物线的切线典型试题,5、最值和范围问题基本思路:,三、利用基本不等式建立不等式求范围:,四、利用平面图形几何性质建立不等式求范围或最值(三角形两边之和大于第三边等),1、,圆锥曲线试题中分式无理函数最值问题突破策略:,(4)利用导数求最值;,观察函数的结构特征,能否直接利用均值不等式?,分析函数中分子与分母的结构特征直接利用均值不等式放缩求出最值,简单明了!,六、树立细节意识,追求满分,圆锥曲线试题学生能够得分,但在解题过程中部分细节注意不到导致得不了满分,归纳圆锥曲线解题过程中的部分细节,与大家共享。,细节1:重视非标准方程向标准方程的转化,避免非标准方程下基本量的求解出错;,细节2:,文科0班26位学生15人出错,关键是没有注意到双曲线的焦点在Y轴上,细节3:,细节4:求动点的轨迹方程后没有注意轨迹方程中变量的范围;,细节5:直线方程与双曲线方程或抛物线方程联立后没有考虑二次项系数是否为0;,细节6:求最值的过程中进行换元没有注意到新变量的取值范围;,七、圆锥曲线三轮复习策略:,1、一轮复习定位:知识、方法全面、基本技能养成,突破策略:以学生为本,以教师批阅、点拨为辅,真正实现学生自身能力的提升;积累简化运算途径,树立简化运算意识。学案设计以高考试题为主、由易到难,讲究学生做对为止的原则。,2、二轮复习定位:专题训练、提升能力、简化运算,突破策

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论