六西格玛应用质量体系手册议程(英文版)(ppt 263页).ppt_第1页
六西格玛应用质量体系手册议程(英文版)(ppt 263页).ppt_第2页
六西格玛应用质量体系手册议程(英文版)(ppt 263页).ppt_第3页
六西格玛应用质量体系手册议程(英文版)(ppt 263页).ppt_第4页
六西格玛应用质量体系手册议程(英文版)(ppt 263页).ppt_第5页
已阅读5页,还剩257页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,QSM754SIXSIGMAAPPLICATIONSAGENDA,Day1Agenda,WelcomeandIntroductionsCourseStructureMeetingGuidelines/CourseAgenda/ReportOutCriteriaGroupExpectationsIntroductiontoSixSigmaApplicationsRedBeadExperimentIntroductiontoProbabilityDistributionsCommonProbabilityDistributionsandTheirUsesCorrelationAnalysis,Day2Agenda,TeamReportOutsonDay1MaterialCentralLimitTheoremProcessCapabilityMulti-VariAnalysisSampleSizeConsiderations,Day3Agenda,TeamReportOutsonDay2MaterialConfidenceIntervalsControlChartsHypothesisTestingANOVA(AnalysisofVariation)ContingencyTables,Day4Agenda,TeamReportOutsonPracticumApplicationDesignofExperimentsWrapUp-PositivesandDeltas,ClassGuidelines,Qthemean,themedianandthemode.,WHATISTHEMEAN?,WHATISTHEMEDIAN?,WHATISTHEMODE?,MEASURESOFCENTRALTENDENCY,SUMMARY,SOWHATSTHEREALDIFFERENCE?,SOWHATSTHEBOTTOMLINE?,COINTOSSPOPULATIONDISPERSION,WHATISTHERANGE?,WHATISTHEVARIANCE/STANDARDDEVIATION?,MEASURESOFDISPERSION,SAMPLEMEANANDVARIANCEEXAMPLE,SOWHATSTHEREALDIFFERENCE?,SOWHATSTHEBOTTOMLINE?,SOWHATISTHISSHIFTDF=(r-1)x(c-1).Inourcase,wehave3columns(c)and2rows(r)soourDF=(2-1)x(3-1)=1x2=2.Thesecondpieceofdataistherisk.Sincewearelookingfor.95(95%)confidence(andarisk=1-confidence)weknowtheariskwillbe.05.Inthec2table,wefindthatthecriticalvaluefora=.05and2DFtobe5.99.Therefore,ourc2CRIT=5.99Ourcalculatedc2valueisthesumoftheindividualcellc2values.Forourexamplethisis.04+.18+.27+.25+.81+1.20=2.75.Therefore,ourc2CALC=2.75.Wenowhaveallthepiecestoperformourtest.OurHo:isc2CALCc2CRIT.Isthistrue?Ourdatashows2.755.99,thereforewefailtorejectthenullhypothesisthatthereisnosignificantdifferencebetweenthevendorperformanceinthisarea.,ContingencyTableExercise,Wehaveapartwhichisexperiencinghighscrap.Yourteamthinksthatsinceitismanufacturedover3shiftsandon3differentmachines,thatthescrapcouldbecaused(Y=f(x)byanoffshiftworkmanshipissueormachinecapability.Verifywith95%confidencewhethereitherofthesehypothesisissupportedbythedata.,Constructacontingencytableofthedataandinterprettheresultsforeachdataset.,LearningObjectives,Understandhowtouseacontingencytabletosupportanimprovementproject.Understandtheenablingconditionsthatdeterminewhentouseacontingencytable.Understandhowtoconstructacontingencytable.Understandhowtointerpretacontingencytable.,DESIGNOFEXPERIMENTS(DOE)FUNDAMENTALS,LearningObjectives,Haveabroadunderstandingoftherolethatdesignofexperiments(DOE)playsinthesuccessfulcompletionofanimprovementproject.Understandhowtoconstructadesignofexperiments.Understandhowtoanalyzeadesignofexperiments.Understandhowtointerprettheresultsofadesignofexperiments.,WhydoweCare?,DesignofExperimentsisparticularlyusefulto:evaluateinteractionsbetween2ormoreKPIVsandtheirimpactononeormoreKPOVs.optimizevaluesforKPIVstodeterminetheoptimumoutputfromaprocess.,IMPROVEMENTROADMAPUsesofDesignofExperiments,KEYSTOSUCCESS,SoWhatIsaDesignofExperiment?,whereamathematicalreasoningcanbehad,itsasgreatafollytomakeuseofanyother,astogropeforathinginthedark,whenyouhaveacandlestandingbyyou.Arbuthnot,AdesignofexperimentintroducespurposefulchangesinKPIVs,sothatwecanmethodicallyobservethecorrespondingresponseintheassociatedKPOVs.,DesignofExperiments,FullFactorial,VariablesInput,Controllable(KPIV)Input,Uncontrollable(Noise)Output,Controllable(KPOV),HowdoyouknowhowmuchasuspectedKPIVactuallyinfluencesaKPOV?Youtestit!,DesignofExperiments,Terminology,Mathematicalobjectsaresometimesaspeculiarasthemostexoticbeastorbird,andthetimespentinexaminingthemmaybewellemployed.H.Steinhaus,MainEffects-Factors(KPIV)whichdirectlyimpactoutputInteractions-Multiplefactorswhichtogetherhavemoreimpactonprocessoutputthananyfactorindividually.Factors-IndividualKeyProcessInputVariables(KPIV)Levels-MultipleconditionswhichafactorissetatforexperimentalpurposesAliasing-Degreetowhichanoutputcannotbeclearlyassociatedwithaninputconditionduetotestdesign.Resolution-Degreeofaliasinginanexperimentaldesign,DOEChoices,Aconfusingarray.,FullFactorialTaguchiL16HalfFraction2leveldesigns3leveldesignsscreeningdesignsResponsesurfacedesignsetc.,Forthepurposesofthistrainingwewillteachonlyfullfactorial(2k)designs.Thiswillenableyoutogetabasicunderstandingofapplicationandusethetool.Inaddition,thevastmajorityofproblemscommonlyencounteredinimprovementprojectscanbeaddressedwiththisdesign.Ifyouhaveanyquestiononwhetherthedesignisadequate,consultastatisticalexpert.,Mumble,Mumble,blackbelt,Mumble,statisticsstuff.,TheYatesAlgorithmDeterminingthenumberofTreatments,Oneaspectwhichiscriticaltothedesignisthattheybe“balanced”.AbalanceddesignhasanequalnumberoflevelsrepresentedforeachKPIV.Wecanconfirmthisinthedesignontherightbyaddingupthenumberof+and-marksineachcolumn.Weseethatineachcase,theyequal4+and4-values,thereforethedesignisbalanced.,Yatesalgorithmisaquickandeasyway(honest,trustme)toensurethatwegetabalanceddesignwheneverwearebuildingafullfactorialDOE.Noticethatthenumberoftreatments(uniquetestmixesofKPIVs)isequalto23or8.Noticethatinthe“Afactor”column,wehave4+inarowandthen4-inarow.Thisisequaltoagroupof22or4.Alsonoticethatthegroupinginthenextcolumnis21or2+valuesand2-valuesrepeateduntilall8treatmentsareaccountedfor.Repeatthispatternfortheremainingfactors.,TheYatesAlgorithmSettinguptheAlgorithmforInteractions,Nowwecanaddthecolumnsthatreflecttheinteractions.RememberthattheinteractionsarethemainreasonweuseaDOEoverasimplehypothesistest.TheDOEisthebesttooltostudy“mix”typesofproblems.,Youcanseefromtheexampleabovewehaveaddedadditionalcolumnsforeachofthewaysthatwecan“mix”the3factorswhichareunderstudy.Theseareourinteractions.Thesignthatgoesintothevarioustreatmentboxesfortheseinteractionsisthealgebraicproductofthemaineffectstreatments.Forexample,treatment7forinteractionABis(-x-=+),soweputaplusinthebox.So,inthesecalculations,thefollowingapply:minus(-)timesminus(-)=plus(+)plus(+)timesplus(+)=plus(+)minus(-)timesplus(+)=minus(-)plus(+)timesminus(-)=minus(-),YatesAlgorithmExercise,Weworkforamajor“Donut&Coffee”chain.Wehavebeentaskedtodeterminewhatarethemostsignificantfactorsinmaking“themostdeliciouscoffeeintheworld”.Inourworkwehaveidentifiedthreefactorsweconsidertobesignificant.Thesefactorsarecoffeebrand(maxwellhousevschockfullonuts),water(springvstap)andcoffeeamount(#ofscoops).,UsetheYatesalgorithmtodesigntheexperiment.,Selectthefactors(KPIVs)tobeinvestigatedanddefinetheoutputtobemeasured(KPOV).Determinethe2levelsforeachfactor.Ensurethatthelevelsareaswidelyspreadapartastheprocessandcircumstanceallow.DrawupthedesignusingtheYatesalgorithm.,So,HowdoIConductaDOE?,Determinehowmanyreplicationsorrepetitionsyouwanttodo.Areplicationisacompletenewrunofatreatmentandarepetitionismorethanonesamplerunaspartofasingletreatmentrun.Randomizetheorderofthetreatmentsandruneach.Placethedataforeachtreatmentinacolumntotherightofyourmatrix.,So,HowdoIConductaDOE?,Calculatetheaverageoutputforeachtreatment.Placetheaverageforeachtreatmentafterthesign(+or-)ineachcell.,AnalysisofaDOE,Addupthevaluesineachcolumnandputtheresultundertheappropriatecolumn.Thisisthetotalestimatedeffectofthefactororcombinationoffactors.Dividethetotalestimatedeffectofeachcolumnby1/2thetotalnumberoftreatments.Thisistheaverageestimatedeffect.,AnalysisofaDOE,Theseaveragesrepresenttheaveragedifferencebetweenthefactorlevelsrepresentedbythecolumn.So,inthecaseoffactor“A”,theaveragedifferenceintheresultoutputbetweenthe+levelandthe-levelis6.75.Wecannowdeterminethefactors(orcombinationoffactors)whichhavethegreatestimpactontheoutputbylookingforthemagnitudeoftherespectiveaverages(i.e.,ignorethesign).,AnalysisofaDOE,Thismeansthattheimpactisinthefollowingorder:A(6.75)AB(5.25)BC(3.25)B(2.25)AC(1.75)ABC(1.25)C(-0.25),AnalysisofaDOE,ConfidenceIntervalforDOEresults,ConfidenceIntervalforDOEresults,IMPROVEMENTPHASEVitalFewVariablesEstablishOperatingTolerances,HowaboutanotherwayoflookingataDOE?,Itlookslikethelanesareingoodconditiontoday,Mark.Timhasbr

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论