




免费预览已结束,剩余110页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1章图的基本概念,本章内容,1图2通路与回路3图的连通性4图的矩阵表示5图的运算,1.1图的基本概念,图的定义图的一些概念和规定简单图和多重图顶点的度数与握手定理图的同构完全图与正则图子图与补图,无序积与多重集合,设A,B为任意的两个集合,称a,b|aAbB为A与B的无序积,记作A任何无向图G的各边均加上箭头就可以得到以G为基图的有向图。,关联与关联次数、环、孤立点,设G为无向图,ek(vi,vj)E,称vi,vj为ek的端点,ek与vi或ek与vj是彼此相关联的。若vivj,则称ek与vi或ek与vj的关联次数为1。若vivj,则称ek与vi的关联次数为2,并称ek为环。任意的vlV,若vlvi且vlvj,则称ek与vl的关联次数为0。设D为有向图,ekE,称vi,vj为ek的端点。若vivj,则称ek为D中的环。无论在无向图中还是在有向图中,无边关联的顶点均称为孤立点。,相邻与邻接,设无向图G,vi,vjV,ek,elE。若etE,使得et(vi,vj),则称vi与vj是相邻的。若ek与el至少有一个公共端点,则称ek与el是相邻的。设有向图D,vi,vjV,ek,elE。若etE,使得et,则称vi为et的始点,vj为et的终点,并称vi邻接到vj,vj邻接于vi。若ek的终点为el的始点,则称ek与el相邻。,邻域,设无向图G,vV,称u|uV(u,v)Euv为v的邻域,记做NG(v)。称NG(v)v为v的闭邻域,记做NG(v)。称e|eEe与v相关联为v的关联集,记做IG(v)。设有向图D,vV,称u|uVEuv为v的后继元集,记做+D(v)。称u|uVEuv为v的先驱元集,记做-D(v)。称+D(v)为v的出邻域,-D(v)为v的入邻域.+D(v)-D(v)为v的邻域,记做ND(v)。称ND(v)v为v的闭邻域,记做ND(v)。,举例,NG(v1),+D(d),v2,v5,NG(v1),v1,v2,v5,IG(v1),e1,e2,e3,c,-D(d),a,c,ND(d),a,c,ND(d),a,c,d,简单图与多重图,定义1.3在无向图中,关联一对顶点的无向边如果多于1条,则称这些边为平行边,平行边的条数称为重数。在有向图中,关联一对顶点的有向边如果多于1条,并且这些边的始点和终点相同(也就是它们的方向相同),则称这些边为平行边。含平行边的图称为多重图。既不含平行边也不含环的图称为简单图。例如:在图1.1中,(a)中e5与e6是平行边,(b)中e2与e3是平行边,但e6与e7不是平行边。(a)和(b)两个图都不是简单图。,顶点的度数,定义1.4设G为一无向图,vV,称v作为边的端点次数之和为v的度数,简称为度,记做dG(v)。在不发生混淆时,简记为d(v)。注:某个点上的环要计算2次度数.设D为有向图,vV,称v作为边的始点次数之和为v的出度,记做d+D(v),简记作d+(v)。称v作为边的终点次数之和为v的入度,记做d-D(v),简记作d-(v)。称d+(v)+d-(v)为v的度数,记做d(v)。注:某个点上的有向环要对这个点计算一次入度计算一次出度.,图的度数的相关概念,在无向图G中,最大度(G)maxd(v)|vV(G)最小度(G)mind(v)|vV(G)称度数为1的顶点为悬挂顶点,与它关联的边称为悬挂边。度为偶数(奇数)的顶点称为偶度(奇度)顶点。在有向图D中,最大出度+(D)maxd+(v)|vV(D)最小出度+(D)mind+(v)|vV(D)最大入度-(D)maxd-(v)|vV(D)最小入度-(D)mind-(v)|vV(D),图的度数举例,d(v1)4(注意,环提供2度),4,1,v4是悬挂顶点,e7是悬挂边。,d+(a)4,d-(a)1(环e1提供出度1,提供入度1),d(a)4+15。5,3,+4(在a点达到)+0(在b点达到)-3(在b点达到)-1(在a和c点达到),握手定理,定理1.1设G为任意无向图,Vv1,v2,vn,|E|m,则,说明任何无向图中,各顶点度数之和等于边数的两倍。证明G中每条边(包括环)均有两个端点,所以在计算G中各顶点度数之和时,每条边均提供2度,当然,m条边,共提供2m度。,另外一个更严格的证明:当G是简单图时,,当图G不是简单图时,只要把每一个环与重边上“嵌入”一个新的顶点得到新的图G,G是简单图.假设有t个新的顶点,图G中原来G中的顶点度数不变,而每个新的顶点的度数为2.新图G的边数比图G的边数多了t条(原因是在环和重边上加入新点后,将原来的一条边变成了两条边)。对G利用前面的证明结果:两边消去2t,得到结论。,握手定理,定理1.2设D为任意有向图,Vv1,v2,vn,|E|m,则,握手定理的推论,推论任何图(无向的或有向的)中,奇度顶点的个数是偶数。证明设G为任意一图,令V1v|vVd(v)为奇数V2v|vVd(v)为偶数则V1V2V,V1V2,由握手定理可知,由于2m和,,所以,为偶数,,但因V1中顶点度数为奇数,,所以|V1|必为偶数。,问题研究,问题:在一个部门的25个人中间,由于意见不同,是否可能每个人恰好与其他5个人意见一致?解答:不可能。考虑一个图,其中顶点代表人,如果两个人意见相同,可用边连接,所以每个顶点都是奇数度。存在奇数个度数为奇数的图,这是不可能的。说明:(1)很多离散问题可以用图模型求解。(2)为了建立一个图模型,需要决定顶点和边分别代表什么。(3)在一个图模型中,边经常代表两个顶点之间的关系。,例2:晚会上大家握手言欢,试证握过奇次手的人数是偶数。解答:构造一个图,以参加晚会的人为顶,仅当二人握手时在相应的二顶间加一条边。于是每个人握手的次数为这个图的相应顶点的度数。用握手定理的推论得到结论。例3:空间中不可能有这样的多面体存在,它的面数是奇数,而且每个面是奇数条围成的。解答:如果有这样的多面体存在,以此多面体的面集合为顶点集构造一个图G,当且仅当两个面有公共边界线时在相应的两顶间连一条边,于是|V(G)|是奇数,而且对每个顶点v,d(v)是奇数,则所有的顶点的度数之和为奇数,与握手定理矛盾。,度数列,设G为一个n阶无向图,Vv1,v2,vn,称d(v1),d(v2),d(vn)为G的度数列。对于顶点标定的无向图,它的度数列是唯一的。反之,对于给定的非负整数列dd1,d2,dn,若存在Vv1,v2,vn为顶点集的n阶无向图G,使得d(vi)di,则称d是可图化的。特别地,若所得图是简单图,则称d是可简单图化的。类似地,设D为一个n阶有向图,Vv1,v2,vn,称d(v1),d(v2),d(vn)为D的度数列,另外称d+(v1),d+(v2),d+(vn)与d-(v1),d-(v2),d-(vn)分别为D的出度列和入度列。,度数列举例,按顶点的标定顺序,度数列为4,4,2,1,3。,按字母顺序,度数列,出度列,入度列分别为5,3,3,34,0,2,11,3,1,2,可图化的充要条件,定理1.3设非负整数列d(d1,d2,dn),则d是可图化的当且仅当,证明必要性。由握手定理显然得证。充分性。由已知条件可知,d中有偶数个奇数度点。奇数度点两两之间连一边,剩余度用环来实现。,可图化举例,由定理1.3立即可知,(3,3,2,1),(3,2,2,1,1)等是不可图化的,(3,3,2,2),(3,2,2,2,1)等是可图化的。,定理:若是简单图的次序列,且则是偶数,且对1960年Erdos和Gallai已经证明这也是充分条件。,证明:大致思路:对任意的k,把图分成两部分:一部分是1到k个点组成的,设为V1,另外的n-K点组成另外一部分,设为V2。我们再来计算1到k点的总的度数之和。这个度数由两部分贡献,一是来自于V1的贡献,最多是V1构成完全图,它们的度数之和为k(k-1),第二部分来自于V2,V2中的每个点给V1的所有点贡献的次数最多是d_i和k之间的最小值(原因是,V2的每个点的度数全部贡献给V1,但V1中的点最多只有k个,只能最多接收k次)。,定理1.4,定理1.4设G为任意n阶无向简单图,则(G)n-1。证明因为G既无平行边也无环,所以G中任何顶点v至多与其余的n-1个顶点均相邻,于是d(v)n-1,由于v的任意性,所以(G)n-1。例1.2判断下列各非负整数列哪些是可图化的?哪些是可简单图化的?(1)(5,5,4,4,2,1)不可图化。(2)(5,4,3,2,2)可图化,不可简单图化。若它可简单图化,设所得图为G,则(G)max5,4,3,2,25,这与定理1.4矛盾。,例1.2,(3)(3,3,3,1)可图化,不可简单图化。假设该序列可以简单图化,设G以该序列为度数列。不妨设Vv1,v2,v3,v4且d(v1)d(v2)d(v3)3,d(v4)1,由于d(v4)1,因而v4只能与v1,v2,v3之一相邻,于是v1,v2,v3不可能都是3度顶点,这是矛盾的,因而(3)中序列也不可简单图化。,(4)(d1,d2,dn),d1d2dn1且为偶数。,可图化,不可简单图化。原因?,例14.2,(5)(4,4,3,3,2,2)可简单图化。下图中两个6阶无向简单图都以(5)中序列为度数列。,图的同构,定义1.5设G1,G2为两个无向图,若存在双射函数f:V1V2,对于vi,vjV1,(vi,vj)E1当且仅当(f(vi),f(vj)E2,并且(vi,vj)与(f(vi),f(vj)的重数相同,则称G1与G2是同构的,记做G1G2。说明(1)类似地,可以定义两个有向图的同构。(2)图的同构关系看成全体图集合上的二元关系。(3)图的同构关系是等价关系。(4)在图同构的意义下,图的数学定义与图形表示是一一对应的。,图的同构举例,彼得森(Petersen)图,图同构的必要条件:,节点数目相等边数相等度数相同的节点数目相等,边图(线图),定义:设G是一个无环图,边图L(G)这样构成:将E(G)中的每条边作为L(G)的顶点集,即V(L(G)=E(G),L(G)中的两顶相邻当且仅当它们是G中的两条相邻的边。边图有许多有趣的性质.例如,(1)若uv是G中的边,则在L(G)中uv对应的顶点的度数是的d(u)+d(v)-2.这是因为:uv对应的顶点的次数是除边uv以外的与u,v相邻的边的条数之和,即(d(u)-1)+(d(v)-1)2),完全图,定义1.6设G为n阶无向简单图,若G中每个顶点均与其余的n-1个顶点相邻,则称G为n阶无向完全图,简称n阶完全图,记做Kn(n1)。设D为n阶有向简单图,若D中每个顶点都邻接到其余的n-1个顶点,又邻接于其余的n-1个顶点,则称D是n阶有向完全图。设D为n阶有向简单图,若D的基图为n阶无向完全图Kn,则称D是n阶竞赛图。,完全图举例,n阶无向完全图的边数为:n(n-1)/2n阶有向完全图的边数为:n(n-1)n阶竞赛图的边数为:n(n-1)/2,K5,3阶有向完全图,4阶竞赛图,正则图,定义1.7设G为n阶无向简单图,若vV(G),均有d(v)k,则称G为k-正则图。举例n阶零图是0-正则图n阶无向完全图是(n-1)-正则图彼得森图是3-正则图说明n阶k-正则图中,边数mkn/2。当k为奇数时,n必为偶数。,子图,定义1.8设G,G为两个图(同为无向图或同为有向图),若VV且EE,则称G是G的子图,G为G的母图,记作GG。若VV或EE,则称G为G的真子图。若VV,则称G为G的生成子图。注:定义中一定是先要保证G是图这个前提.,子图,设G为一图,V1V且V1,称以V1为顶点集,以G中两个端点都在V1中的边组成边集E1的图为G的V1导出的子图,记作GV1。设E1E且E1,称以E1为边集,以E1中边关联的顶点为顶点集V1的图为G的E1导出的子图,记作GE1。,导出子图举例,在上图中,设G为(1)中图所表示,取V1a,b,c,则V1的导出子图GV1为(2)中图所示。取E1e1,e3,则E1的导出子图GE1为(3)中图所示。,定义1.9,定义1.9设G为n阶无向简单图,以V为顶点集,以所有使G成为完全图Kn的添加边组成的集合为边集的图,称为G的补图,记作G。若图GG,则称为G是自补图。,(1)为自补图(2)和(3)互为补图,定义1.10,定义1.10设G为无向图。(1)设eE,用G-e表示从G中去掉边e,称为删除e。设EE,用G-E表示从G中删除E中所有的边,称为删除E。(2)设vV,用G-v表示从G中去掉v及所关联的一切边,称为删除顶点v。设VV,用G-V表示从G中删除V中所有顶点,称为删除V。(3)设边e(u,v)E,用Ge表示从G中删除e后,将e的两个端点u,v用一个新的顶点w(或用u或v充当w)代替,使w关联除e外u,v关联的所有边,称为边e的收缩。(4)设u,vV(u,v可能相邻,也可能不相邻),用G(u,v)(或G+(u,v)表示在u,v之间加一条边(u,v),称为加新边。说明在收缩边和加新边过程中可能产生环和平行边。,举例,G,Ge5,Ge1,e4,Gv5,Gv4,v5,Ge5,1.2通路与回路,定义1.11设G为无向标定图,G中顶点与边的交替序列vi0ej1vi1ej2vi2ejivil称为vi0到vil的通路,其中,vir-1,vir为ejr的端点,r1,2,l,vi0,vil分别称为的始点与终点,中边的条数称为它的长度。若vi0vil,则称通路为回路。若的所有边各异,则称为简单通路,又若vi0vil,则称为简单回路。若的所有顶点(除vi0与vij可能相同外)各异,所有边也各异,则称为初级通路或路径,又若vi0vil,则称为初级回路或圈。将长度为奇数的圈称为奇圈,长度为偶数的圈称为偶圈。,关于通路与回路的说明,在初级通路与初级回路的定义中,仍将初级回路看成初级通路(路径)的特殊情况,只是在应用中初级通路(路径)都是始点与终点不相同的,长为1的圈只能由环生成,长为2的圈只能由平行边生成,因而在简单无向图中,圈的长度至少为?。若中有边重复出现,则称为复杂通路,又若vi0vil,则称为复杂回路。在有向图中,通路、回路及分类的定义与无向图中非常相似,只是要注意有向边方向的一致性。在以上的定义中,将回路定义成通路的特殊情况,即回路也是通路,又初级通路(回路)是简单通路(回路),但反之不真。,通路和回路的简单表示法,只用边的序列表示通路(回路)。定义1.11中的可以表示成ej1,ej2,ejl。在简单图中也可以只用顶点序列表示通路(回路)。定义中的也可以表示成vi0,vi2,vil。为了写出非标定图中的通路(回路),可以先将非标定图标成标定图,再写出通路与回路。在非简单标定图中,当只用顶点序列表示不出某些通路(回路)时,可在顶点序列中加入一些边(这些边是平行边或环),可称这种表示法为混合表示法。,定理1.5,定理1.5在n阶图G中,若从顶点vi到vj(vivj)存在通路,则从vi到vj存在长度小于或等于n-1的通路。证明设v0e1v1e2elvl(v0vi,vlvj)为G中一条长度为l的通路,若ln-1,则满足要求,否则必有l+1n,即上的顶点数大于G中的顶点数,于是必存在k,s,0kp(G),而对于任意的VV,均有p(G-V)p(G),则称V是G的点割集。若V是单元集,即Vv,则称v为割点。,v2,v4,v3,v5都是点割集v3,v5都是割点v1与v6不在任何割集中。,实际上,点割集是若删去它们就会使图不连通的顶点的集合,而割点是若删去此一顶点就会使图不连通的顶点。,无向图的边割集,定义1.17设无向图G,若存在EE,且E,使得p(G-E)p(G),而对于任意的EE,均有p(G-E)p(G),则称E是G的边割集,或简称为割集。若E是单元集,即Ee,则称e为割边或桥。,e6,e5,e2,e3,e1,e2,e3,e4,e1,e4,e1,e3,e2,e4都是割集,e6,e5是桥。,实际上,边割集是若删去它们就会使图不连通的边的集合,而割边是若删去此一边就会使图不连通的边。,点连通度,定义1.18设G为无向连通图且为非完全图,则称(G)min|V|V为G的点割集为G的点连通度,简称连通度。说明连通度是为了产生一个不连通图需要删去的点的最少数目。规定完全图Kn(n1)的点连通度为n-1,规定非连通图的点连通度为0,若(G)k,则称G是k-连通图,k为非负整数。说明(G)有时简记为。上例中图的点连通度为1,此图为1-连通图。K5的点连通度K4,所以K5是1-连通图,2-连通图,3-连通图,4-连通图。若G是k-连通图(k1)则在G中删除任何k-1个顶点后,所得图一定还是连通的。,边连通度,定义1.19设G是无向连通图,称(G)min|E|E是G的边割集为G的边连通度。规定非连通图的边连通度为0。若(G)r,则称G是r边-连通图。说明(G)也可以简记为。若G是r边-连通图,则在G中任意删除r-1条边后,所得图依然是连通的。完全图Kn的边连通度为n-1,因而Kn是r边-连通图,0rn-1。平凡图G由于E则0图14.8中图的边连通度1,它只能是1边-连通图。,例1.6,求所示各图的点连通度,边连通度,并指出它们各是几连通图及几边连通图。最后将它们按点连通程度及边连通程度排序。,K4,K3,K2,K1,K=1=2,K2,K0,K0,例1.6的解答,设第i个图的点连通度为Ki,边连通度为i,I1,2,8。容易看出,K114,K223,K332,K441,K5=15=2,K662,K770,K880。(1)是k-连通图,k边-连通图,k1,2,3,4。(2)是k-连通图,k边-连通图,k1,2,3。(3)是k-连通图,k边-连通图,k1,2。(4)是1-连通图,1边-连通图。(5)是1-连通图,k边-连通图,k1,2。(6)是k-连通图,k边-连通图,k1,2。(7)是0-连通图,0边-连通图。(8)是0-连通图,0边-连通图。点连通程度为(1)(2)(3)(6)(4)(5)(7)(8)。边连通程度为(1)(2)(3)(5)(6)(4)(7)(8)。,有向图的连通性,定义1.20设D为一个有向图。vi,vjV,若从vi到vj存在通路,则称vi可达vj,记作vivj,规定vi总是可达自身的,即vivi。若vivj且vjvi,则称vi与vj是相互可达的,记作vivj。规定vivi。说明与都是V上的二元关系,并且不难看出是V上的等价关系。定义1.21设D为有向图,vi,vjV,若vivj,称vi到vj长度最短的通路为vi到vj的短程线,短程线的长度为vi到vj的距离,记作d。说明与无向图中顶点vi与vj之间的距离d(vi,vj)相比,d除无对称性外,具有d(vi,vj)所具有的一切性质。,连通图,定义1.22设D为一个有向图。若D的基图是连通图,则称D是弱连通图,简称为连通图。若vi,vjV,vivj与vjvi至少成立其一,则称D是单向连通图。若均有vivj,则称D是强连通图。说明强连通图一定是单向连通图,单向连通图一定是弱连通图。,强连通图,单向连通图,弱连通图,强连通图与单向连通图的判定定理,定理1.8设有向图D,Vv1,v2,vn。D是强连通图当且仅当D中存在经过每个顶点至少一次的回路。证明充分性显然。下面证明必要性。由D的强连通性可知,vivi+1,i1,2,n-1。设i为vi到vi+1的通路。又因为vnv1,设n为vn到v1的通路,则1,2,n-1,n所围成的回路经过D中每个顶点至少一次。定理1.9设D是n阶有向图,D是单向连通图当且仅当D中存在经过每个顶点至少一次的通路。,关于连通图的例子:,例:简单图G及补图Gc不能都不连通证明:我们只需要证明:如G不连通的时候,Gc一定连通。设u,v为Gc中的任意两个不同的点。设G1,G2,.Gm为G的所有的连通分支(m大于等于2)。(1)如u,v不属于G的同一个连通分支,则(u,v)属于Gc中的边,u,v在Gc中连通。(2)如u,v属于G的同一个连通分支,因为G不是连通图,则在这个连通分支以外一定存在另外一个连通分支,任取这个连通的一点w,则(u,w),(w,v)都属于Gc中的边,即,u,v在Gc中连通。,例:如G是连通图,G是G的子图,|V(G)|V(G)|,则G中有不属于G的边e,e的一端属于V(G),另外一端不属于V(G).思路:由于|V(G)|V(G)|,则在G中存在一点u,另外存在一点v不在G中。因为G连通,则这两点在G中有一条路P(u,v)存在。从u出发沿着路P(u,v)前进,遇到第一个不属于G的顶点w,P(u,v)上的一段P(u,w)的最后一条边即为所求的边e.,扩大路径法,设G为n阶无向图,E,设l为G中一条路径,若此路径的始点或终点与通路外的顶点相邻,就将它们扩到通路中来。继续这一过程,直到最后得到的通路的两个端点不与通路外的顶点相邻为止。设最后得到的路径为l+k(长度为l的路径扩大成了长度为l+k的路径),称l+k为“极大路径”,称使用此种方法证明问题的方法为“扩大路径法”。有向图中可以类似地讨论,只须注意,在每步扩大中保持有向边方向的一致性。,关于极大路径的说明,由某条路经扩大出的极大路径不唯一。极大路径不一定是图中最长的路径。,“最长路径法”-在图中选最长的路,则最长路的两个起点的所有邻点都在这条路上。利用这个性质来证明。,例1.8,例1.8设G为n(n4)阶无向简单图,(G)3。证明G中存在长度大于或等于4的圈。证明不妨设G是连通图,否则,因为G的各连通分支的最小度也都大于或等于3,因而可对它的某个连通分支进行讨论。设u,v为G中任意两个顶点,由G是连通图,因而u,v之间存在通路,由定理14.5的推论可知,u,v之间存在路径,用“扩大路径法”扩大这条路径,设最后得到的“极大路径”为lv0v1vl,易知l3。若v0与vl相邻,则l(v0,vl)为长度大于或等于4的圈。否则,由于d(v0)(G)3,因而v0除与l上的v1相邻外,还存在l上的顶点vk(k1)和vt(ktl)与v0相邻,则v0v1vkvtv0为一个圈且长度大于或等于4,一般地:设G为n(n3)阶无向简单图,(G)2,则G中存在至少长度大于或者等于+1的圈。证明:最大路径法设P=u0u1uk是图中任意两点之间的最短路中的最长路。则u0的所有邻点都在P上,否则,P能变成更长的路。设u_j1,u_j2,u_jl是u0的邻点,且就j1=(G),u0u1u_jlu0形成一个圈,圈长至少是+1.,例:G是简单图,每个顶点的次数不小于3,则G中有偶圈。证明:用最长轨方法设v0v1vm是中的最长轨,既v0的所有邻点都在这条路上。由于d(v0)3,则存在两个不同的点vi,vj,1i2,则i+1,j+1和j-i+2有公因子k,则k可除尽j-i,于是k可除2,矛盾。,二部图,定义1.23设G为一个无向图,若能将V分成V1和V2(V1V2V,V1V2),使得G中的每条边的两个端点都是一个属于V1,另一个属于V2,则称G为二部图(或称二分图,偶图等),称V1和V2为互补顶点子集。常将二部图G记为。若G是简单二部图,V1中每个顶点均与V2中所有顶点相邻,则称G为完全二部图,记为Kr,s,其中r|V1|,s|V2|。说明n阶零图为二部图。,二部图举例,K6的子图,K6的子图,K3,3,K2,3,K3,3,K2,3,二部图的判定定理,定理1.10一个无向图G是二部图当且仅当G中无奇数长度的圈。证明必要性。设图G是二部图,令Cv0,v1,v2,vk,v0是G的一条回路,其长度为k+1。不失一般性,假设v0V1,由二部图的定义知,v1V2,v2V1。由此可知,v2iV1且v2i+1V2。又因为v0V1,所以vkV2,因而k为奇数,故C的长度为偶数。,二部图的判定定理,充分性。不妨设G为连通图,否则可对每个连通分支进行讨论。设v0为G中任意一个顶点,令V1v|vV(G)d(v0,v)为偶数V2v|vV(G)d(v0,v)为奇数易知,V1,V2,V1V2,V1V2V(G)。下面只要证明V1中任意两顶点不相邻,V2中任意两点也不相邻。若存在vi,vjV1相邻,令(vi,vj)e,设v0到vi,vj的短程线分别为i,j,则它们的长度d(v0,vi),d(v0,vj)都是偶数,于是ije中一定含奇圈,这与已知条件矛盾。类似可证,V2中也不存在相邻的顶点,于是G为二部图。,1.4图的矩阵表示,定义1.24设无向图G,Vv1,v2,vn,Ee1,e2,em,令mij为顶点vi与边ej的关联次数,则称(mij)nm为G的关联矩阵,记作M(G)。,有向图的关联矩阵,定义1.25设有向图D中无环,Vv1,v2,vn,Ee1,e2,em,令,则称(mij)nm为D的关联矩阵,记作M(D)。,有向图的邻接矩阵,定义1.26设有向图D,Vv1,v2,vn,Ee1,e2,,em,令aij(1)为顶点vi邻接到顶点vj边的条数,称(aij(1)nn为D的邻接矩阵,记作A(D),或简记为A。,有向图无向图都适用,有向图的可达矩阵,定义1.27设D为有向图。Vv1,v2,vn,令,pij,1vi可达vj,0否则,称(pij)nn为D的可达矩阵,记作P(D),简记为P。,1.5图的运算,定义1.28设G1,G2为两个图。若V1V2,则称G1与G2是不交的。若E1E2,则称G1与G2是边不交的或边不重的。说明:不交的图,必然是边不交的,但反之不真。,图的运算,定义1.29设G1,G2为不含孤立点的两个图(它们同
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外包运输劳务合同范本
- 房产365租房合同范本
- 大件搬运维修合同范本
- 食堂档口合同范本
- 农产品溯源体系在2025年农业产业扶贫中的应用报告
- 图书漂流试题及答案
- 锅炉制造试题及答案
- 写材料短语题目及答案
- 2025年初二函数题库及答案
- 光伏组件技能考试试题及答案
- 鼓号队培训课件内容
- 液体外渗的预防与处理 2
- 2025山西吕梁文水县公办幼儿园幼儿业务辅助人员招聘120人笔试参考题库附答案解析
- 2025贵州省专业技术人员继续教育公需科目考试题库(2025公需课课程)
- 一年级新生家长会课件(共25张课件)
- 专升本03297企业文化历年试题题库(考试必备)
- 第四讲大学生就业权益及其法律保障课件
- 重庆大学介绍课件
- 学校开展校园欺凌专项治理情况自查表
- 电能表生产流程
- Scala基础语法课件汇总整本书电子教案全套课件完整版ppt最新教学教程
评论
0/150
提交评论