




已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.,1,数学建模理论与实践,基于图论的数学建模,.,2,基于图论的数学建模,一、欧拉环游问题与中国邮递员问题二、最小生成树模型三、最短路模型,.,3,一、欧拉环游问题与中国邮递员问题,(一)图的概念(二)欧拉环游及弗莱里算法(三)中国邮递员问题,.,4,(一)图的概念,问题的提出:,现实生活中,我们经常碰到一些现象,如:在一群人中有些人互相认识,有些人互相不认识。又如:某航空公司在100个城市之间建立若干航线,某些城市间有直达航班,而另一些城市间没有直达航班等等。以上现象都有共同内容:一是有研究的“对象”,如人,城市等;二是这些对象之间存在着某种关系:如互相认识,有直达航班等。为了表示这些对象以及对象之间的关系,我们将“点”代表“对象”,“边”表示“对象之间的关系”,引出了“图”这个概念。,.,5,几个基本概念:,图:由若干个不同的点与连接其中某些顶点的边所组成的图形,称为图,图有二要素:“点”和“边”:“点”表示对象,“边”反映对象之间的关系。,(一)图的概念,.,6,进一步的概念:,(一)图的概念,.,7,环游与欧拉环游:,(一)图的概念,.,8,七桥问题:,(二)欧拉环游及弗莱里算法,流经哥尼斯堡的普雷格河的河湾有两个小岛,七座桥连接了两岸和小岛(如图1),当地流传一个游戏:要求在一次散步中恰好通过每座桥一次。,.,9,七桥问题:,(二)欧拉环游及弗莱里算法,在这个问题中,我们可以将“两个小岛和两岸”看成“点”。连接他们之间的“七座桥”看成“边”,得到图2。,“七桥问题”可以归结为“一笔画”问题:即能否用一支笔不离开纸面地画出经过所有桥一次的路线。用图论的术语,就是一个图是否存在欧拉环游?如果有,如何找出来?,.,10,存在欧拉环游的条件:,(二)欧拉环游及弗莱里算法,一个图存在欧拉环游的条件是:网络有欧拉环游当且仅当中每一点的次为偶数。,一般地,一个图能“一笔画”(不要求回到起点),当且仅当该图或没有奇点,或只有2个奇点。利用上述结论,我们判定“七桥问题”不能实现“一笔画”,因为七桥问题中的图有4个奇点。但是要注意,一个图存在欧拉环游,如果方法不对,仍然可能找不到具体的欧拉环游。,.,11,弗莱里算法:,(二)欧拉环游及弗莱里算法,.,12,弗莱里算法求欧拉环游的实例:,(二)欧拉环游及弗莱里算法,A()B,A()BA,A()BAC,A()BACD,A()BACDE,A()BACDEC,A()BACDECBE()DA,以A为起点,.,13,问题提出:,(三)中国邮递员问题,邮递员从邮局中取出邮件,递送到不同地点,然后再返回邮局。假设要求他至少一次走过他投递范围内的每一条街道,我们希望选择一条尽可能短的路线。中国邮递员问题要求的是在具有非负权的网络中找出一条权最小的环游,即最优环游。如果网络存在欧拉环游,我们可以按照上面的弗莱里算法求得其欧拉环游。对于一个没有欧拉环游的网络,可以通过添重复边的方法使得添加重复边后的网络具有欧拉环游。这里的关键问题是要求所添加重复边的权的和尽可能地小。,问题解法:,点数较多时,可用Edmonds和Johnson算法(这一算法较为复杂,这里不作介绍);点数较少时,可用奇偶点图上作业法求解。,.,14,奇偶点图上作业法:,(三)中国邮递员问题,奇偶点图上作业法口诀:先分奇偶点,奇点对对连;连线不重迭,重迭需改变;圈上连线长,不得过半圈。,.,15,奇偶点图上作业法实例:,(三)中国邮递员问题,再利用弗莱里算法求得的欧拉环游即最优环游。此投递路线的总长度为:71+54+47+26+15=72。,.,16,二、最小生成树模型,(一)森、树、生成树等有关概念(二)树的性质(三)求最小生成树的三种算法,.,17,(一)森、树、生成树等有关概念,问题的提出:,.,18,(一)森、树、生成树等有关概念,一个图的生成树可能不只一个,例如右面的一个图:,它有许多生成树,例如下面每个树都是它的生成树:,.,19,(二)树的性质,.,20,(三)求最小生成树的三种算法,算法一(克鲁斯凯尔,Kruskal)算法二(普赖姆,Prim)算法三(破圈法),.,21,算法一(克鲁斯凯尔,Kruskal),算法一(克鲁斯凯尔,Kruskal)的中心思想是每次添加权尽可能小的边,使新的图无圈,直至得到生成树为止。该方法形象地简称为“最小边加入法”。,.,22,算法一(克鲁斯凯尔,Kruskal),e1e2=e3=e4e5e6v3-v5-v6-v7,最短路的长度为13,.,35,教材P1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 刀刺伤护理措施及诊断
- 综合体二次装修验收培训
- 培训完成情况
- 教师招聘面试说课培训
- 成都市区限购政策下二手房交易安全保障合同
- 高新技术企业部分股权出让及知识产权归属协议
- 餐饮店合伙人共同经营风险防范合同
- 海外务工人员派遣及就业指导合同
- 公共停车设施经营权租赁合同
- 柴油行业居间代理合同样本
- GB/T 22751-2008台球桌
- GA 1205-2014灭火毯
- “十个坚持”的逻辑体系与深刻内涵
- 携手耕耘未来课件
- 社区工作者经典备考题库(必背300题)
- 2023年陕西韩城象山中学高一物理第二学期期末联考试题(含答案解析)
- DB4401-T 102.1-2020 建设用地土壤污染防治+第1部分:污染状况调查技术规范-(高清现行)
- 农业产业园可行性研究报告
- 实验2:基本数据类型、运算符与表达式
- 常州建筑水电安装施工专项方案
- 增强教师职业认同感、荣誉感、幸福感-课件
评论
0/150
提交评论