




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第一讲坐标系1.2极坐标系,1.极坐标的概念,从这向北2000米。,请问:去来宾市八中怎么走?,请分析上面这句话,他告诉了问路人什么?,从这向北走2000米!,出发点,方向,距离,在生活中人们经常用方向和距离来表示一点的位置。这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。,一、极坐标系的建立:,在平面内取一个定点O,叫做极点。,自极点O引一条射线OX,叫做极轴。,再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向)。,这样就建立了一个极坐标系。,O,二、极坐标系内一点的极坐标的规定,设M是平面内一点,极点O与点M的距离|OM|叫做点M的极径,用表示;以极轴OX为始边,射线OM为终边的角XOM叫做点M的极角,用表示。有序数对(,)叫做M的极坐标,记为M(,)。一般地,不作特殊说明时,我们认为0,可取任意实数.,特别强调:表示线段OM的长度,即点M到极点O的距离;表示从OX到OM的角度,即以OX(极轴)为始边,OM为终边的角。,题组一:由点写极坐标说出下图中各点的极坐标,平面上一点的极坐标是否唯一?若不唯一,那有多少种表示方法?坐标不唯一是由谁引起的?不同的极坐标是否可以写出统一表达式?,特别规定:当M在极点时,它的极坐标=0,可以取任意值。,想一想?,三、点的极坐标的表达式的研究,如图:OM的长度为4,,请说出点M的极坐标的其他表达式。,思考:这些极坐标之间有何异同?,思考:这些极角有何关系?,这些极角的始边相同,终边也相同。也就是说它们是终边相同的角。,本题点M的极坐标统一表达式:,极径相同,不同的是极角,题组二:由极坐标找点在极坐标系里描出下列各点,四、极坐标系下点与它的极坐标的对应情况,1给定(,),就可以在极坐标平面内确定唯一的一点M。,2给定平面上一点M,但却有无数个极坐标与之对应。,原因在于:极角有无数个。,一般地,极坐标(,)与(,+2k)(kZ)表示同一个点.特别地,极点O的坐标为(0,)(R).,如果规定0,02,那么除极点外,平面内的点和极坐标就可以一一对应了.,2.在极坐标系中,与(,)关于极轴对称的点是(),A.(,)B.(,)C.(,)D.(,),A,B,题组三1.在极坐标系中,与点(3,)重合的点是(),A.(3,)B.(3,)C.(3,)D.(3,),3一点的极坐标有否统一的表达式?,小结1建立一个极坐标系需要哪些要素,极点;极轴;长度单位;角度单位和它的正方向。,2极坐标系内一点的极坐标有多少种表达式?,有无数种表示。是因为极角引起的。,有。(,2k+)(kZ),作业,课本P121,2,3预习:极坐标和直角坐标的互化,课堂小结:1.理解极坐标系的概念2能在极坐标系中用极坐标刻画点的位置,体会在极坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安全培训教学工作建议课件
- 公司聘用试用员工合同5篇
- 2025年三门峡黄河明珠(集团)有限公司公开招聘高校毕业生考前自测高频考点模拟试题及参考答案详解
- 安全培训效能课件
- 2025福建福州市马尾区琅岐镇殡仪服务站招聘工作人员1人模拟试卷及答案详解(必刷)
- 小学培训独立安全通道课件
- Illudinine-生命科学试剂-MCE
- 安全培训效果评定和改进课件
- 吊车安全责任合同5篇
- HDAC6-IN-62-生命科学试剂-MCE
- 运动学练习题库及参考答案
- DeepSeek从入门到精通
- 沈阳2025年辽宁沈阳辽中区四家事业单位面向区内事业单位遴选18人笔试历年参考题库附带答案详解
- 2025年中国内河码头行业市场深度分析及发展趋势预测报告
- 《国际贸易术语》课件
- 小学生美术素养的综合评价体系构建与实践
- 化学反应中的表示课件九年级化学(2024)上册
- T-CSUS 69-2024 智慧水务技术标准
- 《全国计算机等级考试教程:二级WPS Office高级应用与设计》全套教学课件
- 专题种猪性能测定
- 纺织厂员工劳动合同范本
评论
0/150
提交评论