2015年高三电磁感应专题复习二_第1页
2015年高三电磁感应专题复习二_第2页
2015年高三电磁感应专题复习二_第3页
2015年高三电磁感应专题复习二_第4页
2015年高三电磁感应专题复习二_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

.2015年高三电磁感应专题复习二(附答案)一、选择题acRbdvBMN1、(2013北京理综)如图,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速滑动,MN中产生的感应电动势为El;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2。则通过电阻R的电流方向及E1与E2之比ElE2分别为:( )Aca,21 Bac,21Cac,12 Dca,122、(2013天津理综)如图所示,纸面内有一矩形导体闭合线框动abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN。第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则:( )AQ1Q2 q1=q2 BQ1Q2 q1q2 CQ1=Q2 q1=q2 DQ1=Q2 q1q2tab图甲图乙tt/2OB3、(2013山东理综)将一段导线绕成图甲所示的闭合电路,并固定在水平面(纸面)内,回路的ab边置于垂直纸面向里的匀强磁场中。回路的圆形区域内有垂直纸面的磁场,以向里为磁场的正方向,其磁感应强度B随时间t变化的图像如图乙所示。用F表示ab边受到的安培力,以水平向右为F的正方向,能正确反映F随时间t变化的图像是:( )ttt/2OFttt/2OFtt/2OFtttt/2OF红枫舞秋A B C D4、(2013四川理综)如图所示,边长为L、不可形变的正方形导体框内有半径为r的圆形区域,其磁感应强度B随时间t的变化关系为Bkt(常量k0)。回路中滑动变阻器R的最大阻值为R0,滑动片P位于滑动变阻器中央,定值电阻R1R0、R2。闭合开关S,电压表的示数为U,不考虑虚线MN右侧导体的感应电动势。则:( )AR2两端的电压为U/7B电容器的a极板带正电C滑动变阻器R的热功率为电阻R2的5倍D正方形导线框中的感应电动势为kL2370NM小灯泡5、(2013安徽理综)如图所示,足够长平行金属导轨倾斜放置,倾角为370,宽度为0.5m,电阻忽略不计,其上端接一小灯泡,电阻为1。一导体棒MN垂直于导轨放置,质量为0.2kg,接入电路的电阻为1,两端于导轨接触良好,与导轨间的动摩擦因数为0.5。在导轨间存在着垂直于导轨平面的匀强磁场,磁感应强度为0.8T。将导体棒MN由静止释放,运动一端时间后,小灯泡稳定发光,此后导体棒MN的运动速度及小灯泡消耗的电功率分别为(重力加速度g取10m/s2,sin370=0.6):( )A2.5m/s 1W B5m/s 1WC7.5m/s 9W D15m/s 9W磁条刷卡器OtEE0t06、(2013浙江理综)磁卡的词条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈,当以速度v0刷卡时,在线圈中产生感应电动势。其E-t关系如右图所示。如果只将刷卡速度改为v0/2,线圈中的E-t关系可能是:( )OtEE0t02OtEE0t02OtEE02t0OtEE02t0A B C DOOdabcBvtOt1t2vtOt2t1vtOt2t1vtOt2t17、(2013福建理综)如图,矩形闭合线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时刻。线框下落过程形状不变,ab边始终保持与磁场水平边界OO 平行,线框平面与磁场方向垂直。设OO 下方磁场磁场区域足够大,不计空气影响,则下列哪一个图像不可能反映线框下落过程中速度v随时间t变化的规律:( ) A B C D a bMNdc8、(2013上海物理)如图,通电导线MN与单匝矩形线圈abcd共面,位置靠近ab且相互绝缘。当MN中电流突然减小时,线圈所受安培力的合力方向:( )A向左 B向右 C垂直纸面向外 D垂直纸面向里左右9、(2013海南物理)如图,在水平光滑桌面上,两相同的矩形刚性小线圈分别叠放在固定的绝缘矩形金属框的左右两边上,且每个小线圈都各有一半面积在金属框内,在金属框接通逆时针方向电流的瞬间:( )A两小线圈会有相互靠拢的趋势B两小线圈会有相互远离的趋势C两小线圈中感应电流都沿顺时针方向D左边小线圈中感应电流沿顺时针方向,右边小线圈中感应电流沿逆时针方向10、(2012山东理综)如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B。将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动。导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g。下列选项正确的是:( )qmRBqLAP=2mgvsin BP=3mgvsinC当导体棒速度达到时加速度大小为sinD在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功图511、如图5所示,两块水平放置的平行金属板间距为d,定值电阻的阻值为R,竖直放置的线圈匝数为n,绕制线圈导线的电阻也为R,其它导线的电阻忽略不计。现有竖直向上的磁场B穿过线圈,在两极板中一个质量为m、电量为q,带正电的油滴恰好处于静止状态,则磁场B的变化情况是:( )A均匀增大,磁通量变化率的大小为2mgd/nq;B均匀增大,磁通量变化率的大小为mgd/nq;C均匀减小,磁通量变化率的大小为2mgd/nq;D均匀减小,磁通量变化率的大小为mgd/nq.O图7L/2L/412、一个半径为r、质量为m 、 电阻为R的均匀金属圆环,用一根长为L的绝缘细绳悬挂于O点,离O点下方L/2处有一宽度为L/4的垂直纸面向里的匀强磁场区域,如图7所示。现使圆环由与悬点O等高位置A处由静止释放,下摆中金属环所在平面始终垂直磁场,则金属环在整个过程中产生的焦耳热是:( )AmgL; Bmg(L/2+r) Cmg(3L/4+r); Dmg(L+r)图813、如图8,甲、乙两个完全相同的线圈,在距地面同一高度处由静止开始释放,A、B是边界范围、磁感应强度的大小和方向均完全相同的匀强磁场,只是A的区域比B的区域离地面高一些,两线圈下落时始终保持线圈平面与磁场垂直,则:( )A. 甲先落地;B. 乙先落地;C. 二者同时落地;D. 无法确定。xyOV0图914、正方形的闭合线框,边长为a,质量为m,电阻为R,在竖直平面内以某一水平初速度在垂直于框面的水平磁场中,运动一段时间t后速度恒定,运动过程中总有两条边处在竖直方向(即线框自身不转动),如图9所示。已知磁场的磁感应强度在竖直方向按B=B0+ky规律逐渐增大,k为常数。在时间t内:( )A、水平分速度不断减小;B、水平分速度不断增大;C、水平分速度大小不变;D、在竖直方向上闭合线框做自由落体运动。15、如图所示,有两根和水平方向成角的光滑平行的金属轨道,上端接有可变电阻R,下端足够长,空间有垂直于轨道平面的匀强磁场,磁感强度为B.一根质量为m的金属杆从轨道上由静止滑下.经过足够长的时间后,金属杆的速度会趋近于一个最大速度vm,则:( ) A.如果B增大,vm将变大 B.如果变大,vm将变大C.如果R变大,vm将变大 D.如果m变小,vm将变大16、如图115所示,水平导轨的电阻忽略不计,金属棒ab和cd的电阻多别为Rab和Rcd,且RabRcd,处于匀强磁场中。金属棒cd在力F的作用下向右匀速运动。ab在外力作用下处于静止状态,下面说法正确的是( )AUabUcd BUab=UcdCUabUcd D无法判断17、如图1114所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A,B为该磁场的竖直边界,若不计空气阻力,则( )A圆环向右穿过磁场后,还能摆至原来的高度。B在进入和离开磁场时,圆环中均有感应电流C圆环进入磁场后离平衡位置越近速度越大,感应电流也越大D圆环最终将静止在平衡位置。18、如图1122所示,A,B是两个完全相同的灯泡,L是自感系数较大的线圈,其直流电阻忽略不计。当电键K闭合时,下列说法正确的是( )AA比B先亮,然后A熄灭BB比A先亮,然后B逐渐变暗,A逐渐变亮CAB一齐亮,然后A熄灭DA、B一齐亮然后A逐渐变亮B的亮度不变BFabRr19、(2009年福建卷)如图所示,固定位置在同一水平面内的两根平行长直金属导轨的间距为d,其右端接有阻值为R的电阻,整个装置处在竖直向上磁感应强度大小为B的匀强磁场中。一质量为m(质量分布均匀)的导体杆ab垂直于导轨放置,且与两导轨保持良好接触,杆与导轨之间的动摩擦因数为u。现杆在水平向左、垂直于杆的恒力F作用下从静止开始沿导轨运动距离L时,速度恰好达到最大(运动过程中杆始终与导轨保持垂直)。设杆接入电路的电阻为r,导轨电阻不计,重力加速度大小为g。则此过程( )A杆的速度最大值为 B流过电阻R的电量为C恒力F做的功与摩擦力做的功之和等于杆动能的变化量D恒力F做的功与安倍力做的功之和大于杆动能的变化量20、(2010年上海卷)如图所示,平行于y轴的导体棒以速度v向右匀速直线运动,经过半径为R、磁感应强度为B的圆形匀强磁场区域,导体棒中的感应电动势与导体棒位置x关系的图像是( )二、计算题21、(2012上海物理)如图,质量为M的足够长金属导轨abcd放在光滑的绝缘水平面上。一电阻不计,质量为m的导体棒PQ放置在导轨上,始终与导轨接触良好,PQbc构成矩形。棒与导轨间动摩擦因数为m,棒左侧有两个固定于水平面的立柱。导轨bc段长为L,开始时PQ左侧导轨的总电阻为R,右侧导轨单位长度的电阻为R0。以ef为界,其左侧匀强磁场方向竖直向上,右侧匀强磁场水平向左,磁感应强度大小均为B。在t0时,一水平向左的拉力F垂直作用于导轨的bc边上,使导轨由静止开始做匀加速直线运动,加速度为a。(1)求回路中感应电动势及感应电流随时间变化的表达式;(2)经过多少时间拉力F达到最大值,拉力F的最大值为多少?(3)某一过程中回路产生的焦耳热为Q,导轨克服摩擦力做功为W,求导轨动能的增加量。BbeQaFPcfdB22、(2013江苏物理)如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈平面与磁场垂直。 已知线圈的匝数N=100,边长ab =1. 0m、bc=0.5m,电阻r=2。 磁感应强度B在01s内从零均匀变化到0.2T。 在15s内从0.2T均匀变化到0.2T,取垂直纸面向里为磁场的正方向。求: (1)0.5s时线圈内感应电动势的大小E和感应电流的方向;(2)在15s内通过线圈的电荷量q;(3)在05s内线圈产生的焦耳热Q。23、如图所示,两根不计电阻的倾斜平行导轨与水平面的夹角=37o ,底端接电阻R=1.5.金属棒a b的质量为m=0.2kg.电阻r=0.5,垂直搁在导轨上由静止开始下滑,金属棒a b与导轨间的动摩擦因数为=0.25,虚线为一曲线方程y=0.8sin(x)m与x轴所围空间区域存在着匀强磁场,磁感应强度B=0.5T,方向垂直于导轨平面向上(取g=10m/s2,sin37o=0.6,cos37o=0.8)。 问:当金属棒a b运动到Xo=6 m处时,电路中的瞬时电功率为0.8w,在这一过程中,安培力对金属棒a b做了多少功?24、如图13所示,一半径为r的圆形导线框内有一匀强磁场,磁场方向垂直于导线框所在平面,导线框的左端通过导线接一对水平放置的平行金属板,两板间的距离为d,板长为l. t=0 时,磁场的磁感应强度B从B0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m、带电量为 q 的液滴以初速度0水平向右射入两板间,该液滴可视为质点。(1)要使该液滴能从两板间射出,磁感应强度随时间的变化率K应满足什么条件?(2)要使该液滴能从两板间右端的中点射出,磁感应强度B与时间t应满足什么关系?25、如图12所示,光滑的平行导轨P、Q相距l=1m,处在同一竖直面中,导轨左端接有如图所示的电路,其中水平放置的平行板电容器C两极板间距离d=10mm,定值电阻R1=R3=8,R2=2,导轨电阻不计,磁感应强度B=0.4T的匀强磁场水平向里穿过导轨平面,当金属棒ab沿导轨向右匀速运动(开关S断开)时,电容器两极板之间质量m=11014kg,带电荷量q=11015C的粒子恰好静止不动;当S闭合时,粒子以加速度a=7m/s2向下做匀加速运动,取g=10m/s2,求:(1)金属棒ab运动的速度多大?电阻多大?(2)S闭合后,使金属棒ab做匀速运动的外力的功率多大? R3R2qSmR1vaPbQ图1226、如图7所示,水平的平行虚线间距为d=50cm,其间有B=1.0T的匀强磁场。一个正方形线圈边长为l=10cm,线圈质量m=100g,电阻为R=0.020。开始时,线圈的下边缘到磁场上边缘的距离为h=80cm。将线圈由静止释放,其下边缘刚进入磁场和刚穿出磁场时的速度相等。取g=10m/s2,求:线圈进入磁场过程中产生的电热Q。线圈下边缘穿越磁场过程中的最小速度v。线圈下边缘穿越磁场过程中加速度的最小值a。hdl1234v0v0v图 727、如图所示,在距离水平地面h0.8 m的虚线的上方,有一个方向垂直于纸面水平向内的匀强磁场,正方形线框abcd的边长l0.2 m,质量m0.1 kg,电阻R0.08 .一条不可伸长的轻绳绕过轻滑轮,一端连线框,另一端连一质量M0.2 kg的物体A.开始时线框的cd在地面上,各段绳都处于伸直状态,从如图所示的位置由静止释放物体A,一段时间后线框进入磁场运动,已知线框的ab边刚进入磁场时线框恰好做匀速运动当线框的cd边进入磁场时物体A恰好落地,同时将轻绳剪断,线框继续上升一段时间后开始下落,最后落至地面整个过程线框没有转动,线框平面始终处于纸面内,g取10 m/s2.求:(1)匀强磁场的磁感应强度B?(2)线框从开始运动到最高点,用了多长时间?(3)线框落地时的速度多大?28、如图甲所示,两根足够长平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g现在闭合开关S,将金属棒由静止释放(取g = 10m/s2,sin37= 0.60,cos37= 0.80) 判断金属棒ab中电流的方向; 若电阻箱R2接入电路的阻值为0,当金属棒下降高度为h时,速度为v,求此过程中定值电阻上产生的焦耳热Q; 当B = 0.40T,L = 0.50m, = 37时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系,如图乙所示求阻值R1和金属棒的质量mSR2R1PMNQaB甲b2.060300R2/乙vm/ms-129、(2013年全国)如图,两条平行导轨所在平面与水平地面的夹角为,间距为L。导轨上端接有一平行板电容器,电容为C。导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面。在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触。已知金属棒与导轨之间的动摩擦因数为,重力加速度大小为g。忽略所有电阻。让金属棒从导轨上端由静止开始下滑,求: (1)电容器极板上积累的电荷量与金属棒速度大小的关系;mLBC(2)金属棒的速度大小随时间变化的关系。30、(2012年四川)如图甲所示,间距为 L、电阻不计的光滑导轨固定在倾角为 q 的斜面上。在 MNPQ矩形区域内有方向垂直于斜面的匀强磁场,磁感应强度为 B;在 CDEF 矩形区域内有方向垂直于斜面向下的磁场,磁感应强度 Bt 随时间 t 变化的规律如图乙所示,其中 Bt 的最大值为 2B。现将一根质量为 M、电阻为 R、长为 L 的金属细棒 cd 跨放在 MNPQ 区域间的两导轨上并把它按住,使其静止。在 t0 时刻,让另一根长也为 L 电阻不计的金属细棒 ab 从 CD 上方的导轨上由静止开始下滑,同时释放 cd 棒。已知 CF 长度为 2L,两根细棒均与导轨良好接触,在 ab 从图中位置运动到 EF 处的过程中,cd 棒始终静止不动,重力加速度为 g;tx 是未知量。(1)求通过 cd 棒的电流,并确定 MN PQ 区域内磁场的方向; (2)当 ab 棒进入 CDEF 区域后,求 cd 棒消耗的电功率; (3)求 ab 棒刚下滑时离 CD 的距离。 31、如图(甲)所示,一个足够长的“U”形金属导轨NMPQ固定在水平面内,MN、PQ两导轨间宽L=0.50米,一根质量为m=0.50kg的均匀金属导体棒ab静止在导轨上且接触良好,abMP恰好围成一个正方形。该轨道平面处在磁感应强度大小可以调节的竖直向上的匀强磁场中。ab棒的电阻为R=0.10,其它部分电阻不计。开始时,磁感应强度B0=0.50特。(1)若保持磁感应强度B0的大小不变,从t=0时刻开始,给ab棒施加一个水平向右的拉力,使它做匀加速直线运动,此拉力F的大小随时间t的变化关系如图(乙)所示。求:匀加速运动的加速度及ab棒与导轨间的滑动摩擦力。如果已知拉力在前2秒作功29焦,求这2秒内通过ab杆电流的有效值。(2)若从t=0开始,调动磁感应强度的大小,使其以的变化率均匀增加,求经过多长时间ab棒开始滑动?此过程中通过ab棒的电量是多少?32、 如图所示,半径为r、圆心为O1的虚线所围的圆形区域内存在垂直纸面向外的匀强磁场,在磁场右侧有一竖直放置的平行金属板M和N,两板间距离为L,在MN板中央各有一个小孔O2、O3,O1、O2、O3在同一水平直线上,与平行金属板相接的是两条竖直放置间距为L的足够长的光滑金属导轨,导体棒PQ与导轨接触良好,与阻值为R的电阻形成闭合回路(导轨与导体棒的电阻不计),该回路处在磁感应强度大小为B,方向垂直纸面向里的匀强磁场中,整个装置处在真空室中,有一束电荷量为+q、质量为m的粒子流(重力不计),以速率v0从圆形磁场边界上的最低点E沿半径方向射入圆形磁场区域,最后从小孔O3射出。现释放导体棒PQ,其下滑h后开始匀速运动,此后粒子恰好不能从O3射出,而从圆形磁场的最高点F射出。求:(1)圆形磁场的磁感应强度B。(2)导体棒的质量M。(3)棒下落h的整个过程中,电阻上产生的电热。(4)粒子从E点到F点所用的时间。33、(2013上海物理)如图,两根相距L0.4m、电阻不计的平行光滑金属导轨水平放置,一端与阻值R0.15的电阻相连。导轨x0一侧存在沿x方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k0.5T/m,x0处磁场的磁感应强度B00.5T。一根质量m0.1kg、电阻r0.05的金属棒置于导轨上,并与导轨垂直。棒在外力作用下从x0处以初速度v02m/s沿导轨向右运动,运动过程中电阻上消耗的功率不变。求:(1)回路中的电流;(2)金属棒在x2m处的速度;(3)金属棒从x0运动到x2m过程中安培力做功的大小;LxORB(4)金属棒从x0运动到x2m过程中外力的平均功率。34、如图所示,电动机牵引一根原来静止的、长为1m、质量为0.1kg的导体棒MN,其电阻R为1,导体棒架在处于磁感应强度B=1T,竖直放置的框架上,当导体棒上升h=3.8m时获得稳定的速度,导体产生的热量为2J,电动机牵引棒时,电压表、电流表计数分别为7V、1A,电动机的内阻r=1,不计框架电阻及一切摩擦;若电动机的输出功率不变,g取10m/s2,求: 导体棒能达到的稳定速度为多少?AV MN 导体棒从静止达到稳定所需的时间为多少?aa图甲321图乙12N35、甲所示,“目”字形轨道的每一短边的长度都等于a,只有四根平行的短边有电阻,阻值都是r,不计其它各边电阻。使导轨平面与水平面成夹角固定放置,如图乙所示。一根质量为m的条形磁铁,其横截面是边长为a的正方形,磁铁与导轨间的动摩擦因数为,磁铁与导轨间绝缘。假定导轨区域内的磁场全部集中在磁铁的端面,并可视为匀强磁场,磁感应强度为B,方向垂直导轨平面。开始时磁铁端面恰好与正方形3重合,现使其以某一初速度下滑,磁铁恰能匀速滑过正方形2,直至磁铁端面恰好与正方形1重合。已知重力加速度为g。求:(1)上述过程中磁铁运动经历的时间;(2)上述过程中所有电阻消耗的电能。36、(2008全国卷)如图,一直导体棒质量为m、长为l、电阻为r,其两端放在位于水平面内间距也为l的光滑平行导轨上,并与之密接;棒左侧两导轨之间连接一可控制的负载电阻(图中未画出);导轨置于匀强磁场中,磁场的磁感应强度大小为B,方向垂直于导轨所在平面。开始时,给导体棒一个平行于导轨的初速度v0。在棒的运动速度由v0减小至v1的过程中,通过控制负载电阻的阻值使棒中的电流I保持恒定。导体棒一直在磁场中运动。若不计导轨电阻,求此过程中导体棒上感应电动势的平均值和负载电阻上消耗的平均功率。2015年高考电磁感应专题复习参考答案一、选择题1、C 2、A 3、B 4、AC 5、B 6、D 7、A 8、D9、BC 10、AC 11、C 12、C 13、A 14、C 15、BC 16、B 17、B 18、B 19、BD 20、A二、计算题21、【解】(1)感应电动势为EBLv导轨做初速为零的匀加速运动,vat sat2/2 感应电流的表达式为IBLv/R总又 R总= R2R0s联立得:IBLat/(RR0at2)(2)导轨受安培力F安BILB2L2at/(RR0at2)摩擦力为FfFN(mgBIL)mgB2L2at/(RR0at2)由牛顿第二定律FF安FfMa,拉力 FMamg(1)B2L2at/(RR0at2)上式中当R/tR0at 即时外力F 取最大值 (3)设此过程中导轨运动距离为s,由动能定理W合Ek摩擦力为Ff(mgF安)摩擦力做功为WmgsW安mgsQ得:导轨动能的增加量22、【解析】(1) 感应电动势 磁通量的变化 解得 代入数据得E1=10V 感应电流的方向adcba(2) 同理可得 感应电流 电量 解得 代入数据得 q=10C(3)01s内的焦耳热 且 15s内的焦耳热 由,代入数据得 Q=100J23、.解析:金属棒a b从静止开始运动至X0=6m处,曲线方程 y=0.8sin(X0)m (1)设金属棒在X0处的速度为V,切割磁感线运动产生感应电动势为EE=B yV (2)此时电路中消耗的电功率为P= (3) 此过程中安培力对金属棒做功为W安,根据动能定理 mgsin370S mgcos370 S W安 = m V2 (4) 由(1)(4)式联解得 W安 = 3.8 J 24、答案 (1)K (g+) (2)B=B0+(g+)t25、解:(1)带电粒子在电容器两极板间静止时,受向上的电场力和向下的重力作用而平衡求得电容器两极板间的电压:由于粒子带负电,可知上极板电势高由于S断开,R1上无电流,R2、R3上电压等于U1,电路中的感应电流即通过R2、R3的电流强度为:由闭合电路欧姆定律可知:ab切割磁感线运动产生的感应电动势为: 其中r为ab金属棒的电阻当闭合S后,带电粒子向下做匀加速运动,根据牛顿第二定律有:求得S闭合后电容器两极板间的电压这时电路中的感应电流为:根据闭合电路欧姆定律有: 将已知量代入求得又因:即金属棒做匀速运动的速度为3m/s,电阻r=2(2)S闭合后,通过ab的电流I2=0.15A,ab所受安培力F2=BLI=0.410.15=0.06Nab以速度v=3m/s匀速运动时,所受外力必与安培力F2大小相等,方向相反,即F=0.06N方向向右(与v同向),可见外力F的功率为:P=Fv=0.063=0.18W26、答案 :(1) 0.5J (2) 2 m/s (3) 10(1) m/s227、解析:(1)设线框到达磁场边界时速度大小为v,由机械能守恒定律可得:Mg(hl)mg(hl)(Mm)v2代入数据解得:v2 m/s线框的ab边刚进入磁场时,感应电流:I线框恰好做匀速运动,有:MgmgIBl代入数据解得:B1 T(2)设线框进入磁场之前运动时间为t1,有:hlvt1代入数据解得:t10.6 s线框进入磁场过程做匀速运动,所用时间:t20.1 s此后轻绳拉力消失,线框做竖直上抛运动,到最高点时所用时间:t30.2 s线框从开始运动到最高点,所用时间:tt1t2t30.9 s(3)线框从最高点下落至磁场边界时速度大小不变,线框所受安培力大小也不变,即IBl(Mm)gmg因此,线框穿出磁场过程还是做匀速运动,离开磁场后做竖直下抛运动由机械能守恒定律可得:mvmv2mg(hl)代入数据解得线框落地时的速度:vt4 m/s.答案:(1)1 T(2)0.9 s(3)4 m/s28、. 由右手定则,金属棒ab中的电流方向为b到a 由能量守恒,金属棒减小的重力势能等于增加的动能和电路中产生的焦耳热 mgh = mv2/2 + Q解得 Q = mghmv2/2 设最大速度为v,切割磁感线产生的感应电动势 E = BLv,由闭合电路的欧姆定律 I = E/(R1 + R2);从b端向a端看,金属棒受力如图;金属棒达到最大速度时满足 mgsin BIL = 0;由以上三式得v = mgsin(R1 + R2)/B2L2由图像可知:斜率 k = (60 30)/2 m/s =15m/s、纵截距v0 = 30m/s;所以得到 mgsinR1/ B2L2 = v0、mgsin/ B2L2 = k,解得:R1 = 2.0、m = 0.1kg29、【答案】Q=CBLv 30、解:(1)如图示,cd 棒受到重力、支持力和安培力的作用而处于平衡状态,由力的平衡条件有 BILMg sinq 解得 上述结果说明回路中电流始终保持不变,而只有回路中电动势保持不变,才能保证电流不变,因此可以知道:在 tx 时刻 ab 刚好到达 CDEF 区域的边界 CD。在0tx 内,由楞次定律可知,回路中电流沿 abdca 方向,再由左手定则可知,MNPQ 区域内的磁场方向垂直于斜面向上 (2)ab 棒进入 CDEF 区域后,磁场不再发生变化,在 ab、cd 和导轨构成的回路中,ab 相当于电源

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论