



免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
.导数与函数的零点专题研究方程根或函数的零点的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现例题精讲例1、已知函数f(x)x33x2ax2,曲线yf(x)在点(0,2)处的切线与x轴交点的横坐标为2.(1)求a;(2)证明:当k0.当x0时,g(x)3x26x1k0,g(x)单调递增,g(1)k10时,令h(x)x33x24,则g(x)h(x)(1k)xh(x)h(x)3x26x3x(x2),h(x)在(0,2)单调递减,在(2,)单调递增,所以g(x)h(x)h(2)0.所以g(x)0在(0,)没有实根综上,g(x)0在R有唯一实根,即曲线yf(x)与直线ykx2只有一个交点例2、已知函数.(I)讨论的单调性;(II)若有两个零点,求的取值范围.【解析】()( i )当时,则当时,;当时,故函数在单调递减,在单调递增( ii )当时,由,解得:或若,即,则,故在单调递增若,即,则当时,;当时,故函数在,单调递增;在单调递减若,即,则当时,;当时,;故函数在,单调递增;在单调递减()(i)当时,由()知,函数在单调递减,在单调递增又,取实数满足且,则有两个零点(ii)若,则,故只有一个零点(iii)若,由(I)知,当,则在单调递增,又当时,故不存在两个零点;当,则函数在单调递增;在单调递减又当时,故不存在两个零点综上所述,的取值范围是例3、设函数.(I)求曲线在点处的切线方程;(II)设,若函数有三个不同零点,求c的取值范围;(III)求证:是有三个不同零点的必要而不充分条件.解:(I)由,得因为,所以曲线在点处的切线方程为(II)当时,所以令,得,解得或与在区间上的情况如下:所以,当且时,存在,使得由的单调性知,当且仅当时,函数有三个不同零点(III)当时,此时函数在区间上单调递增,所以不可能有三个不同零点当时,只有一个零点,记作当时,在区间上单调递增;当时,在区间上单调递增所以不可能有三个不同零点综上所述,若函数有三个不同零点,则必有故是有三个不同零点的必要条件当,时,只有两个不同点, 所以不是有三个不同零点的充分条件因此是有三个不同零点的必要而不充分条件基础专练1若函数f(x)2x39x212xa恰好有两个不同的零点,则a可能的值为()A4 B6 C7 D8答案A解析由题意得f(x)6x218x126(x1)(x2),由f(x)0得x2,由f(x)0得1x0时,f(x)2aaln.(1)解f(x)的定义域为(0,),f(x)2e2x(x0)当a0时,f(x)0,f(x)没有零点当a0时,因为ye2x单调递增,y单调递增,所以f(x)在(0,)上单调递增又f(a)0,当b满足0b且b时,f(b)0时,f(x)存在唯一零点(2)证明由(1),可设f(x)在(0,)的唯一零点为x0,当x(0,x0)时,f(x)0.故f(x)在(0,x0)上单调递减,在(x0,)上单调递增,所以当xx0时,f(x)取得最小值,最小值为f(x0)由于2e2x00,所以f(x0)2ax0aln2aaln.故当a0时,f(x)2aaln.3已知函数f(x).(1)若f(x)在区间(,2)上为单调递增函数,求实数a的取值范围;(2)若a0,x01,设直线yg(x)为函数f(x)的图象在xx0处的切线,求证:f(x)g(x)(1)解易得f(x),由已知得f(x)0对x(,2)恒成立,故x1a对x(,2)恒成立,1a2,a1.(2)证明a0,则f(x).函数f(x)的图象在xx0处的切线方程为yg(x)f(x0)(xx0)f(x0)令h(x)f(x)g(x)f(x)f(x0)(xx0)f(x0),xR,则h(x)f(x)f(x0).设(x)(1x)ex0(1x0)ex,xR,则(x)ex0(1x0)ex,x01,(x)0,(x)在R上单调递减,而(x0)0,当x0,当xx0时,(x)0,当x0,当xx0时,h(x)1,函数f(x)(1x2)exa. (1)求f(x)的单调区间; (2)证明:f(x)在(,)上仅有一个零点; (3)若曲线yf(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m1.解析:(1)f(x)2xex(1x2)ex(x22x1)ex(x1)2exxR,f(x)0恒成立.f(x)的单调增区间为(,).(2)证明f(0)1a,f(a)(1a2)eaa,a1,f(0)2aeaa2aaa0,f(0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广告安装施工合同
- 精确分析 民用航空器维修试题及答案
- 2025年会计实务解题技巧试题及答案
- 新手指南:无人机执照考试试题及答案
- 优化学习效果一级建造师试题及答案
- 系统化2025年中级会计考试试题及答案
- 护理临床实习试题及答案
- 考试策略规划 2024年高级审计师考试试题及答案
- 医疗健康领域中的区块链技术高职生创新案例
- 护理安全体系建设试题及答案
- GB/T 43632-2024供应链安全管理体系供应链韧性的开发要求及使用指南
- 《光伏发电工程预可行性研究报告编制规程》(NB/T32044-2018)中文版
- 自动焊锡机安全操作规程培训
- 空管自动化系统的基本组成与功能课件
- 2023年杭州市规划局拱墅规划分局编外人员招考考前自测高频难、易考点模拟试题(共500题)含答案详解
- 品牌国际化对企业出口竞争力和品牌价值的影响研究
- 方特企业管理制度
- 医用云胶片方案
- GB/T 5744-2023船用气动快关阀
- 基于蓝牙的无线温湿度监测系统的设计与制作
- 烟花爆竹行业事故应急救援处置培训
评论
0/150
提交评论