




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
秋季班数学专题3 面积问题一、内容提要1. 因为面积公式是用线段的代数式表示的,所以面积与线段可以互相转换。运用面积公式及有关面积性质定理解答几何题是常用的方法,简称面积法。2. 面积公式(略)3. 两个三角形的面积比定理 等高(底)的两个三角形的面积比,等于它们对应的底(高)的比 有一个角相等或互补的两个三角形面积的比等于夹这个角两边的乘积的比 相似三角形面积的比等于它们的相似比的平方 有公共边的两个三角形面积的比等于它们的第三顶点连线被公共边分成的两条线段的比(内分比或外分比)。如图ABC和ADC有公共边AC,M内分BD第三顶点连线BD被公共边AC内分或外分于点M,则 M外分BD定理是以公共边为底,面积的比等于它们的对应高的比换成对应线段的比二、例题例1. 求证有一个30度角的菱形,边长是两条对角线的比例中项已知:菱形ABCD中, DAE30求证:AB2ACBD证明:作高DE,DAE30DEADABS菱形ABCDABDEAB2S菱形ABCDACBD,AB2ACBD例2. 求证:等边三角形内任一点到各边的距离的和是一个定值已知:ABC中,ABBCAC,D是形内任一点,DEBC,DFAC,DGAB,E,F,G是垂足求证:DEDFDG是一个定值证明:连结DA,DB,DC,设边长为a, SABCSDBCSDCASDABahaa(DEDFDG) DEDFDGha等边三角形的高ha是一个定值,DEDFDG是一个定值本题可推广到任意正n边形,其定值是边心距的n倍例3. 已知:ABC中,求:的值解:ADF和ABC有公共角A,同理,(本题可推广到:当,时,)例4. 如图RtABC 被斜边上的高CD 和直角平分线CE分成3个三角形,已知其中两个面积的值标在图中,求第三个三角形的面积x。 解:CE平分ACB, CD是 RtABC的高 CADBCD, 解得x1= 4, x2=9 (两解都适合) 例5.设一直线截ABC三边AB,BC,CA或延长线于D,E,F那么 (梅涅劳斯Menelaus定理)证明:连结AE,根据三角形面积比定理得1例6.已知MN 是ABC的中位线,P在MN上,BP,CP交对边于D,E求证证明:连结并延长AP交BC于F,则APPFSCPASCPF,SBPASBPF例7.如图已知:ABC中,ABCRt,AC2AB,ACM和BCN都是等边三角形 求证:MN被AC平分证明:连结AN,ABC中ABCRt,AC2ABACB=30CAN=90BCM90SACMba, SCAN=abSACMSCAN,ACM,CAN有公共边AC, MKKN三、课内外练习1. 如图ABC面积是96,D分BC为21,E分AB为31则ADE面积是2. 几条直线都平行于三角形的同一边,并分其它两边为10个相等的线段,同时把三角形分成10个不同的部分,已知这些部分中最大的面积是38,那么原三角形的面积是3. ABC三边a,b,c 上的高分别是ha=6, hb=4, hc=3,那么abc=4. S正方形ABCDk,M,N分别是边AB,BC的中点AN,CM相交于O,那么S四边形AOCD5. 平行四边形ABCD中,E分AB为12,F分BC为21,DE和AF交于G,那么6. 如图平行四边形ABCD中P,Q分别是BC,CD的中点,写出和ABP等积的三角形(5)(6)7. 已知:ABC中AB10,D,E分别在边AB,AC上,且在DEBC,SADESBDC2,求8. 如图经过ABC内一点O,与各顶点A,B,C的直线,把三角形分成6个小三角形,其中的4个面积已标在图中,求ABC的面积9. 如图已知:平行四边形ABCD中,AECF,AE,CF交于G求证:AGBBGC10. 已知:ABC中,O是形内任一点,AO,BO,CO延长线交对边于D,E,F求证:11. 如图已知:AC平分BAD,AC2ABAD求证:12. 如图已知:ABC中,P,Q在BC上,且BAPCAQ求证:ABAC13. ABC内一点P,过P作三边的平行线,所得的小三角形面积分别为4,9,49那么ABC面积是多少?14. ABC中,点D,E,F分别分BC,CA,AB为12,AD,BE,CF相交于P,Q,R求PQR与ABC的面积比 15.梯形ABCD中ABCD,O是对角线的交点,若SCOD3,SAOB11求S梯形ABCD16.四边形ABCD的对角线ACBD15cm ,O是交点,AOB150,求SABCD 17.四边形ABCD中,E,F分别在BC,CD上,DFFC1,CEEB2,若SADFm,S四边形AECFn (mn),则S四边形ABCD练习题参考答案1.482.2003.234 4.k5.6.有五个7.428.3159.由等积等底推出等高证全等10.左边1 边右边6. ABCACD用三角形面积比和7. SABPS
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- JJG(烟草)26-2010膨胀梗丝填充值测定仪检定规程
- 考研复习-风景园林基础考研试题附参考答案详解(黄金题型)
- 《风景园林招投标与概预算》试题A(含答案详解)
- 2025-2026年高校教师资格证之《高等教育法规》通关题库附答案详解(达标题)
- 2025福建晋园发展集团有限责任公司权属子公司招聘7人笔试备考题库含答案详解(新)
- 2025年黑龙江省五大连池市辅警招聘考试试题题库带答案详解(完整版)
- 2025年河北省定州市辅警招聘考试试题题库附答案详解(轻巧夺冠)
- 2025年K2学校STEM课程实施效果评估与教育质量评价改革路径报告
- 脓毒症治疗中的β内酰胺类抗生素延长输注2025
- 武汉开放大学2025年《领导科学基础》形考作业1-4答案终考任务答案
- 内分泌科临床路径存在问题及整改措施
- 嵊泗县洋山客运站工程环评报告
- 农家乐出租合同协议书
- 2025年保定市中考二模历史试题及答案
- 泰国餐饮劳务合同协议书
- 广东省五校联考2024-2025学年高一下学期5月月考生物试题(有答案)
- 2025年网络安全专业技术资格考试试题及答案
- 二年级数学下册应用题专项练习卷(每日一练共38份)
- 2024年江苏省无锡市中考生物真题
- 《危重症患儿管饲喂养护理》中华护理学会团体标准解读
- 《腾讯案例分析》课件
评论
0/150
提交评论