




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
BatchDoc-Word文档批量处理工具圆与坐标系1如图,在平面直角坐标系中,正方形ABCO的顶点A、C分别在Y轴,X轴上,以AB为弦的M与X轴相切,若点A的坐标为(0,8),则圆心M的坐标为( )A.(4,-5) B.(5,-4) C.(-5,4) D.(-4,5)2如图,以点P为圆心,以为半径的圆弧与x轴交于A,B两点,点A的坐标为(2,0),点B的坐标为(6,0),则圆心P的坐标为( )A. B. (4,2) C. (4,4) D. (2,)3、如图,在平面直角坐标系中,点O为坐标原点,点P在第一象限,P与x轴交于O,A两点,点A的坐标为(6,0),P的半径为,则点P的坐标为_。4、如图,M与x轴相交于点A(2,0),B(8,0),与y轴相切于点C,圆心M的坐标为 5如图,一圆与平面直角坐标系中的x轴切于点A(8,0),与y轴交于点B(0,4),C(0,16),则该圆的直径=_6、如图,O的半径为2,点A的坐标为,直线AB为O的切线,B为切点则B点的坐标为_.7在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作O交BC于点M、N,O与AB、AC相切,切点分别为D、E,则MND的度数为 8如图,半圆O与等腰直角三角形两腰CA、CB分别切于D、E两点,直径FG在AB上,若BG=1,则ABC的周长为( )A、 B、6 C、 D、49已知O的半径为1,圆心O到直线l的距离为2,过l上的点A作O的切线,切点为B,则线段AB的长度的最小值为 ( )A1 B C D210如图,在平面直角坐标系xOy中,直线AB经过点A(4,0)、B(0,4),O的半径为1(O为坐标原点),点P在直线AB上,过点P作O的一条切线PQ,Q为切点,则切线长PQ的最小值为( ) A B C2 D311木匠黄师傅用长AB=3,宽BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心O1,O2分别在CD,AB上,半径分别是O1C,O2A,锯两个外切的半圆拼成一个圆;方案三:沿对角线AC将矩形锯成两个三角形,适当平移三角形并锯一个最大的圆;(1)写出方案一中的圆的半径;(2)通过计算说明方案二和方案三中,哪个圆的半径较大?12操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。(1)分别测量下面各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.(2) 如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合下面的两个图说明其中的道理.(提示:考虑)由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.13如图,AB是O的直径,AC是弦(1) 请你按下面步骤画图第一步,过点A作BAC的角平分线,交O于点D;第二步,过点D作AC的垂线,交AC的延长线于点E第三步,连接BD(2)求证:DE是O的切线;(3)如图AD=5,AE=4,求O的直径 14阅读材料:已知,如图(1),在面积为S的ABC中, BC=a,AC=b, AB=c,内切圆O的半径为r.连接OA、OB、OC,ABC被划分为三个小三角形 .(1)类比推理:若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),如图(2),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r;(2)理解应用:如图(3),在等腰梯形ABCD中,ABDC,AB=21,CD=11,AD=13,O1与O2分别为ABD与BCD的内切圆,设它们的半径分别为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 目标考试题及答案
- 昆曲考试题及答案
- 中级财务会计(菏泽学院)知到智慧树答案
- 中级日语II(山东联盟)知到智慧树答案
- 小学数学教师综合素质评比活动专业知识测试卷含答案
- 狂犬病暴露预防处置培训考核试题及答案(伤口处置人员)
- 压力性损伤的预防与护理相关试题(附答案)
- 2025担保抵押影视投资合同范本
- 2025版高品质公寓房屋买卖合同文本下载
- 2025年度智能家居房产广告设计与客户体验提升合同
- 2025广东广州市从化区社区专职人员招聘33人笔试参考题库附答案解析
- 建材买卖(橱柜订购类)合同协议书范本
- 新概念第一册课文讲解
- 2025年小学英语教师业务理论考试试题及答案
- 中小学基孔肯雅热应急防控预案
- 港口无人驾驶行业深度报告:奇点已至蓝海启航
- 纪法考试题库及答案解析
- 免疫复合物沉积-洞察及研究
- 信息安全评估管理办法
- 法律谈判教学课件
- 销售岗位职级管理办法
评论
0/150
提交评论