


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第2章 导数与微分隐函数的导数、由参数方程所确定的函数的导数【教学目的】:1. 掌握隐函数的求导方法;2. 掌握取对数求导方法;3. 掌握由参数方程所确定的函数的导数的求法;【教学重点】:1. 隐函数的求导方法;2. 对数求导法;3. 由参数方程所确定的函数的导数的求法。【教学难点】:1. 隐函数的求导方法;2. 对数求导法。【教学时数】:2学时【教学过程】:2.3.1 隐函数的求导法则1显函数与隐函数定义 显函数:函数的因变量用自变量的表达式直接表示的函数称为显函数隐函数:用二元方程表示的函数,称为隐函数例如:就是一个隐函数有些隐函数可以化为显函数,但有些隐函数如却很难、甚至根本不可能化为显函数,因此我们有必要介绍一下隐函数的求导方法2隐函数的求导法(1)将方程两边分别同时对求导,并在求导过程中视为的函数,的函数为的复合函数;(2)解出含有的方程,即为所求例1 求由方程所确定的隐函数的导数解将方程两边分别对求导,注意是的函数,得 由上式解出,便得隐函数的导数为 2.3.2 对数求导法对数求导法的一般步骤:(1)对函数的两边同时取自然对数,得到一个隐函数;(2)利用隐函数求导法对上述隐含数求导注意对数求导法适用于由几个因子通过乘、除、乘方、开方所构成的比较复杂的函数的求导,及幂指函数的求导 例4 已知解将两边同时取对数,得 将上式两边分别对求导,注意到是的函数,得于是 例5 求的导数解将方程两边同时取对数,得 ,将上式两边分别对求导,得 ,所以 2.3.3 由参数方程所确定函数的导数1由参数方程所确定的函数的概念2由参数方程所确定的函数的求导法定理1若函数,都可导,而且,则参数方程(1)所确定的函数的导数存在,且 或 (2)例6求由下列参数方程所确定的函数的导数:(2)解(2),所以=【教学小节】:通过本节的学习,掌握隐函数、含参数方程函数的求导方法,尤其是要熟练掌握对数求导法。【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 产业投资合作协议的法律框架
- 红酒生意基础知识培训
- 2024年铜川市消防员招聘笔试真题
- 南充市蓬安县医疗卫生辅助岗考试真题2024
- 2024年南充营山县引进“带编入企”招聘笔试真题
- 2024年杭州市余杭区卫生健康系统事业单位招聘笔试真题
- 宁波初三一模数学试卷
- 去年余杭中考数学试卷
- 沛县五年级上册数学试卷
- 清远高考数学试卷
- 微电网的总体结构
- DB53-T 1119-2022石林彝族(撒尼)刺绣技法-(高清最新)
- 辽宁省盘锦市各县区乡镇行政村村庄村名居民村民委员会明细
- PCB板来料检验规范
- DL∕T 617-2019 气体绝缘金属封闭开关设备技术条件
- 诺如病毒感染暴发调查和预防控制技术指南(2023版)
- 班级管理(第3版)教学课件汇总全套电子教案(完整版)
- 教师入职审批登记表
- 日语教学计划.doc
- 岩石抗压岩石单轴压缩变形试验记录
- 《职业病危害告知卡》
评论
0/150
提交评论