全等三角形的判定1(SSS).ppt_第1页
全等三角形的判定1(SSS).ppt_第2页
全等三角形的判定1(SSS).ppt_第3页
全等三角形的判定1(SSS).ppt_第4页
全等三角形的判定1(SSS).ppt_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,11.2三角形全等的判定,1、全等三角形的定义,能够完全重合的两个三角形叫全等三角形。,2、全等三角形有什么性质?,知识回顾,问题1:其中相等的边有:,问题2:其中相等的角有:,AB=DE,BC=EF,AC=DF,A=D,B=E,C=F,(全等三角形的对应边相等),(全等三角形的对应角相等),3.在ABC与ABC中,若AB=AB,BC=BC,AC=AC,A=A,B=B,C=C,那么ABC与ABC全等吗?,具备三条边对应相等,三个角对应相等的两个三角形全等,满足下列条件的两个三角形是否一定全等:,(1)一个条件,(2)两个条件,(3)三个条件,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,3cm,3cm,满足下列条件的两个三角形是否一定全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,(1)一个条件,(2)两个条件,(3)三个条件,满足下列条件的两个三角形是一定否全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,(1)一个条件,(2)两个条件,(3)三个条件,300,3cm,满足下列条件的两个三角形是一定否全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,(1)一个条件,(2)两个条件,(3)三个条件,满足下列条件的两个三角形是一定否全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,(1)一个条件,(2)两个条件,(3)三个条件,4cm,6cm,满足下列条件的两个三角形是一定否全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,只有两个条件对应相等的两个三角形不一定全等。,(1)一个条件,(2)两个条件,(3)三个条件,满足下列条件的两个三角形是一定否全等:,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,只有两个条件对应相等的两个三角形不一定全等。,(1)一个条件,(2)两个条件,(3)三个条件,满足下列条件的两个三角形是否一定全等:,一个条件,两个条件,三个条件,一边,一角,两边,一边一角,两角,三角,三边,两边一角,两角一边,只有一个条件对应相等的两个三角形不一定全等。,只有两个条件对应相等的两个三角形不一定全等。,先任意画出一个ABC,再画一个ABC,使AB=AB,BC=BC,CA=CA,把画好的ABC剪下,放到先画出的ABC上,它们全等吗?,探究,三边对应相等的两个三角形全等(可以简写为“边边边”或“SSS”)。,想一想:这个结果反映了什么规律?,全等,思考:你能用“边边边”解释三角形具有稳定性吗?,判断两个三角形全等的推理过程,叫做证明三角形全等。,用数学语言表述:,在ABC和DEF中,ABCDEF(SSS),已知:如图,AB=AC,DB=DC,请说明B=C成立的理由,A,B,C,D,在ABD和ACD中,,AB=AC(已知),DB=DC(已知),AD=AD(公共边),ABDACD(SSS),解:连接AD,B=C(全等三角形的对应角相等),已知:AC=AD,BC=BD,求证:AB是DAC的平分线.,AC=AD(),BC=BD(),AB=AB(),ABCABD(),1=2,AB是DAC的平分线,(全等三角形的对应角相等),已知,已知,公共边,SSS,(角平分线定义),证明:在ABC和ABD中,思考,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?,分析:要证明ABCFDE,还应该有AB=FD这个条件,DB是AB与DF的公共部分,且AD=FBAD+DB=FB+DB即AB=F,思考,已知AC=FE,BC=DE,点A,D,B,F在一条直线上,AD=FB(如图),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?,如图,AB=AC,AE=AD,BD=CE,求证:AEBADC。,BD-ED=CE-ED,即BE=CD。,练一练,证明:BD=CE,归纳:,(1)准备条件:证全等时要用的间接条件要先证好;,(2)证明三角形全等书写三步骤:,写出在哪两个三角形中,摆出三个条件用大括号括起来,写出全等结论,证明三角形全等的步骤:,结论:,小结,2.三边对应相等的两个三角形全等(边边边或SSS);,1.知道三角形三条边的长度怎样画三角形,,通过本节课的学习,你有哪些收获?,拓展训练,已知AC=FE,BC=DE,点A,B,D,F在一条直线上,AD=FB(如图),要用“边边边”证明ABCFDE,除了已知中的AC=FE,BC=DE以外,还应该有什么条件?怎样才能得到这个条件?,A,C,E,F,D,B,变式,练习1如图,已知点B、E、C、F在同一条直线上,ABDE,ACDF,BECF。求证:AD。,练习2:如图,已知ABCD,ADCB,求证:BD,问:此题添加辅助线,若连结BD行吗?,在原有条件下,还能推出什么结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论