




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级下数学:第一章一元一次不等式和一元一次不等式组复习课件,第一章一元一次不等式和一元一次不等式组复习,八年级下学期(北师大版),一、知识点总结:,1、不等号:表示下等关系的符号称为不等号。一般包括“”、“,大于,左边的量大于右边的量,32,小于号,小于,左边的量小于右边的量,-5,3x-2,得x-3的解?4呢?,解:当X=-2时,2x-1=2(-2)-1=5-3.的解.当x=4时,2x-1=24-1=7-3,即不等式左边右边,所以x=4是不等式2x-1-3的解.,5、不等式的解集:,一个含有未知数的不等式的所有解,组成了这个不等式的解集。,例:x5是不等式3x-52x的解集,则下列说法正确的有()个。,5是不等式3x-52x的一个解;0是不等式3x-52x的一个解;x4也是不等式3x-52x的解集;所有小于4的数都是不等式3x-52x的解。,剖析:x5是不等式3x-52x的解集,说明任何一个小于5的数都是不等式3x-52x的一个解,当然小于4的值也一定是不等式3x-52x的解,但xa或xa或xa,xa的解集没有最小值,x-3时,x+30;,(2).当x2;,12、利用两个一次函数的图象求一元一次不等式的解集:,对于两个一次函数y1=k1x+b1和y2=k2x+b2,若比较y1与y2的大小,则为比较k1x+b1与k2x+b2的大小,即为求不等式k1x+b1k2x+b2(或k1x+b1k2x+b2)的解集,或求方程k1x+b1=k2x+b2的解。利用一次函数的图象解决这类问题会更加直观。若y1y2,则一次函数y1=k1x+b1的图象在一次函y2=k2x+b2的图象的上方,从而找出对应的x的取值范围即可;若y1y2(3)、当x取何值时,y1b,xa,axb,无解,同大取大,同小取小,大小小大取中间,大大小小就无解,16、一元一次不等式的解法:,步骤:(1)解不等式组中的每一个不等式,分别求出它们的解集;,(2)将每个不等式的解集在同一条数轴上表示出来,找出它们的公共部分,注意:公共部分可能没有,了可能是一个点。,(3)根据公共部分写出不等式级一解集,若没有公共部分,则说明不等式组无解。,例:解下列不等式组:,17、一元一次不等式(组)的应用:,(1)、利用不等式解决商家销售中的利润问题:,例:某商店将一件商品的进价提价20%的,以降价30%,以105元出售,问该商店卖出这件产品,是盈利还是亏损?,解:设这件商品的进价为x元,则x(1+20%)(1-30%)=105,解得x=125,因为105125,所以该商店卖出这件产品亏损了。,A、甲B、乙C、丙D、不能确定,C,(2)、利用不等式解决方案设计问题:,例1:某校在“五一”期间组织学生外出旅游,如果单独租用45座的客车若干辆,恰好坐满;如果单独租用60座的客车,可少租一辆,并且有一辆不空也不满。(1)求外出旅游的学生人数是多少?(2)已知45座客车座客车每辆租金250元,60座客车每辆租金300元,为了节省租金,并保证每个学生都能有座,决定怎样租用客车,使得租金最少?,解:设单独租用45座的客车x辆,则单独租用了(x-1)辆60座的客车。根据题意得:,045x-60(x-2)60,解得:41000。所以当每月行驶的路程小于1000千米时,租国营出租四公司的车合算;当每月行驶的路程大于1000千米时,租个体车主和车合算;(3)由题意得y1=y2,即2x=x+1000,解得x=1000,所以每月行驶的路程为1000千米时,租两家车的费用相同;(4)因23001000,所以租个体车主和车合算。,例3、某饮料厂为了开发新产品,用A、B丙种果汁原料各19千克、17.2千克试制甲、乙两种新型饮料共50千克,下表是实验的相关数据:,(1)假设甲种饮料需配制千克,请你写出满足题意的不等式组,并求出其解集.,(2)若甲种饮料每千克成本为4元,乙种饮料每千克成本为3元,设这两种饮料的成本总额为y元,请写出y与x的函数关系式(不要求写自变量的取值范围),并根据(1)的运算结果,确定当甲种饮料配制多少千克时,甲、乙两种饮料的成本总额最少?,解:(1)由题意得:,解不等式组,得,(2)y=4x+3(50-x),即y=x+150。因为x越小,y越小,所以当x=28时,y最小。即当甲种饮料配制28千克时,甲、乙两种饮料的成本总额最少。,28x30,练习:绵阳市“全国文明村”江油白玉村果农王灿收获枇杷20吨,桃子12吨。现计划租用甲、乙两种货车共8辆将这批水果全部运往外地销售,已知一辆甲种货车可装枇杷4吨和桃子1吨,一辆乙种货车可装枇杷和桃子各2吨。(1)王灿如何安排甲、乙两种货车可一次性地运到销售地?有几种方案?(2)若甲种货车每辆要付运费300元,乙种货车每辆要付运费240元,则果农王灿应选择哪种方案,使运费最少?最少运费是多少?,解:(1)设安排甲种货车x辆,则安排乙种货车(8-x)辆,依题材意得4x+2(8-x)20,且x+2(8-x)12,解得2x4。因为x是正整数,所以x可取的值为2,3,4。因此安排甲、乙两种货车有三种方案:,(2)方案一所需运费30
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 福建省漳州市2026届高三第一次教学质量检测数学试题(含答案)
- 幼师论文题目及答案
- 2025年食品、饮料及烟草批发服务项目建议书
- 教师老师试题及答案
- 公务员制度自考试题及答案
- 抗原检测生物安全培训课件
- 扩展语句压缩语段课件
- 慢性胃炎的护理
- 2025年机械技能考试题目及答案
- 山东高职考试数学试题及答案
- 2025年党史党建知识测试题库100题(含标准答案)
- 2025公需课《人工智能赋能制造业高质量发展》试题及答案
- 【MOOC】研究生英语科技论文写作-北京科技大学 中国大学慕课MOOC答案
- 《工程建设标准强制性条文电力工程部分2023年版》
- 航天禁(限)用工艺目录(2021版)-发文稿(公开)
- φ108管棚施工作业指导书
- 脑卒中的功能锻炼课件
- 部编版三年级上册道德与法治第一单元第1课《学习伴我成长》课件
- 倪海厦X年扶阳论坛演讲
- 《一站到底》最全的题库
- 现场临电方案改
评论
0/150
提交评论