已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1,ArtificialIntelligence:BayesianNetworks,2,GraphicalModels,Ifnoassumptionofindependenceismade,thenanexponentialnumberofparametersmustbeestimatedforsoundprobabilisticinference.Norealisticamountoftrainingdataissufficienttoestimatesomanyparameters.Ifablanketassumptionofconditionalindependenceismade,efficienttrainingandinferenceispossible,butsuchastrongassumptionisrarelywarranted.Graphicalmodelsusedirectedorundirectedgraphsoverasetofrandomvariablestoexplicitlyspecifyvariabledependenciesandallowforlessrestrictiveindependenceassumptionswhilelimitingthenumberofparametersthatmustbeestimated.BayesianNetworks:Directedacyclicgraphsthatindicatecausalstructure.MarkovNetworks:Undirectedgraphsthatcapturegeneraldependencies.,3,BayesianNetworks,DirectedAcyclicGraph(DAG)NodesarerandomvariablesEdgesindicatecausalinfluences,4,ConditionalProbabilityTables,Eachnodehasaconditionalprobabilitytable(CPT)thatgivestheprobabilityofeachofitsvaluesgiveneverypossiblecombinationofvaluesforitsparents(conditioningcase).Roots(sources)oftheDAGthathavenoparentsaregivenpriorprobabilities.,Burglary,Earthquake,Alarm,JohnCalls,MaryCalls,5,CPTComments,Probabilityoffalsenotgivensincerowsmustaddto1.Examplerequires10parametersratherthan251=31forspecifyingthefulljointdistribution.NumberofparametersintheCPTforanodeisexponentialinthenumberofparents(fan-in).,6,JointDistributionsforBayesNets,ABayesianNetworkimplicitlydefinesajointdistribution.,Example,Thereforeaninefficientapproachtoinferenceis:1)Computethejointdistributionusingthisequation.2)Computeanydesiredconditionalprobabilityusingthejointdistribution.,7,NaveBayesasaBayesNet,NaveBayesisasimpleBayesNet,Y,X1,X2,Xn,PriorsP(Y)andconditionalsP(Xi|Y)forNaveBayesprovideCPTsforthenetwork.,8,IndependenciesinBayesNets,IfremovingasubsetofnodesSfromthenetworkrendersnodesXiandXjdisconnected,thenXiandXjareindependentgivenS,i.e.P(Xi|Xj,S)=P(Xi|S)However,thisistoostrictacriteriaforconditionalindependencesincetwonodeswillstillbeconsideredindependentiftheirsimplyexistssomevariablethatdependsonboth.Forexample,BurglaryandEarthquakeshouldbeconsideredindependentsincetheybothcauseAlarm.,9,IndependenciesinBayesNets,IfremovingasubsetofnodesSfromthenetworkrendersnodesXiandXjdisconnected,thenXiandXjareindependentgivenS,i.e.P(Xi|Xj,S)=P(Xi|S)However,thisistoostrictacriteriaforconditionalindependencesincetwonodeswillstillbeconsideredindependentiftheirsimplyexistssomevariablethatdependsonboth.Forexample,BurglaryandEarthquakeshouldbeconsideredindependentsincetheybothcauseAlarm.,P(Xi|Xj,S)=P(Xi|S),isequivalenttoP(Xi,Xj|S)=P(Xi|S)P(Xj|S)Howtoprove?,10,IndependenciesinBayesNets,IfremovingasubsetofnodesSfromthenetworkrendersnodesXiandXjdisconnected,thenXiandXjareindependentgivenS,i.e.P(Xi|Xj,S)=P(Xi|S)However,thisistoostrictacriteriaforconditionalindependencesincetwonodeswillstillbeconsideredindependentiftheirsimplyexistssomevariablethatdependsonboth.Forexample,BurglaryandEarthquakeshouldbeconsideredindependentsincetheybothcauseAlarm.,11,IndependenciesinBayesNets(cont.),Unlessweknowsomethingaboutacommoneffectoftwo“independentcauses”oradescendentofacommoneffect,thentheycanbeconsideredindependent.Forexample,ifweknownothingelse,EarthquakeandBurglaryareindependent.However,ifwehaveinformationaboutacommoneffect(ordescendentthereof)thenthetwo“independent”causesbecomeprobabilisticallylinkedsinceevidenceforonecausecan“explainaway”theother.Forexample,ifweknowthealarmwentoffthatsomeonecalledaboutthealarm,thenitmakesearthquakeandburglarydependentsinceevidenceforearthquakedecreasesbeliefinburglary.andviceversa.,12,BayesNetInference,Givenknownvaluesforsomeevidencevariables,determinetheposteriorprobabilityofsomequeryvariables.Example:GiventhatJohncalls,whatistheprobabilitythatthereisaBurglary?,Burglary,Earthquake,Alarm,JohnCalls,MaryCalls,?,Johncalls90%ofthetimethereisanAlarmandtheAlarmdetects94%ofBurglariessopeoplegenerallythinkitshouldbefairlyhigh.However,thisignoresthepriorprobabilityofJohncalling.,13,BayesNetInference,Example:GiventhatJohncalls,whatistheprobabilitythatthereisaBurglary?,Burglary,Earthquake,Alarm,JohnCalls,MaryCalls,?,Johnalsocalls5%ofthetimewhenthereisnoAlarm.Soover1,000daysweexpect1BurglaryandJohnwillprobablycall.However,hewillalsocallwithafalsereport50timesonaverage.Sothecallisabout50timesmorelikelyafalsereport:P(Burglary|JohnCalls)0.02,14,BayesNetInference,Example:GiventhatJohncalls,whatistheprobabilitythatthereisaBurglary?,Burglary,Earthquake,Alarm,JohnCalls,MaryCalls,?,ActualprobabilityofBurglaryis0.016sincethealarmisnotperfect(anEarthquakecouldhavesetitofforitcouldhavegoneoffonitsown).Ontheotherside,eveniftherewasnotanalarmandJohncalledincorrectly,therecouldhavebeenanundetectedBurglaryanyway,butthisisunlikely.,15,TypesofInference,16,SampleInferences,Diagnostic(evidential,abductive):Fromeffecttocause.P(Burglary|JohnCalls)=0.016P(Burglary|JohnCallsMaryCalls)=0.29P(Alarm|JohnCallsMaryCalls)=0.76P(Earthquake|JohnCallsMaryCalls)=0.18Causal(predictive):FromcausetoeffectP(JohnCalls|Burglary)=0.86P(MaryCalls|Burglary)=0.67Intercausal(explainingaway):Betweencausesofacommoneffect.P(Burglary|Alarm)=0.376P(Burglary|AlarmEarthquake)=0.003Mixed:Twoormoreoftheabovecombined(diagnosticandcausal)P(Alarm|JohnCallsEarthquake)=0.03(diagnosticandintercausal)P(Burglary|JohnCallsEarthquake)=0.017,17,SampleInferences,Diagnostic(evidential,abductive):Fromeffecttocause.P(Burglary|JohnCalls)=0.016P(Burglary|JohnCallsMaryCalls)=0.29P(Alarm|JohnCallsMaryCalls)=0.76P(Earthquake|JohnCallsMaryCalls)=0.18Causal(predictive):FromcausetoeffectP(JohnCalls|Burglary)=0.86P(MaryCalls|Burglary)=0.67Intercausal(explainingaway):Betweencausesofacommoneffect.P(Burglary|Alarm)=0.376P(Burglary|AlarmEarthquake)=0.003Mixed:Twoormoreoftheabovecombined(diagnosticandcausal)P(Alarm|JohnCallsEarthquake)=0.03(diagnosticandintercausal)P(Burglary|JohnCallsEarthquake)=0.017,Assignment:Calculatetheseresults!,18,ProbabilisticInferenceinHumans,Peoplearenotoriouslybadatdoingcorrectprobabilisticreasoningincertaincases.Oneproblemistheytendtoignoretheinfluenceofthepriorprobabilityofasituation.,19,MontyHallProblem,1,2,3,OneLineDemo:/crypto/Monty/monty.html,20,MultiplyConnectedNetworks,Networkswithundirectedloops,morethanonedirectedpathbetweensomepairofnodes.,Ingeneral,inferenceinsuchnetworksisNP-hard.Somemethodsconstructapolytree(s)fromgivennetworkandperforminferenceontransformedgraph.,21,NodeClustering,Eliminateallloopsbymergingnodestocreatemeganodesthathavethecross-productofvaluesofthemergednodes.,Numberofvaluesformergednodeisexponentialinthenumberofnodesmerged.Stillreasonablytractableformanynetworktopologiesrequiringrelativelylittlemergingtoeliminateloops.,22,BayesNetsApplications,MedicaldiagnosisPathfindersystemoutperformsleadingexpertsindiagnosisoflymph-nodedisease.MicrosoftapplicationsProblemdiagnosis:printerproblemsRecognizinguserintentsforHCITextcategorizationandspamfilteringStudentmodelingforintelligenttutoringsystems.,23,StatisticalRevolution,AcrossAItherehasbeenamovementfromlogic-basedapproachestoapproachesbasedonprobabilityandstatistics.StatisticalnaturallanguageprocessingStatisticalcomputervisionStatisticalrobotnavigationStatisticallearningMostapproachesarefeature-basedand“propositional”anddonothandlecomplexrelationaldescriptionswithmultipleentitieslikethosetypicallyrequiringpredicatelogic.,Structured(Multi-Relational)Data,Inmanydomains,dataconsistsofanunboundednumberofentitieswithanarbitrarynumberofpropertiesandrelationsbetweenthem.SocialnetworksBiochemicalcompoundsWebsites,25,BiochemicalData,PredictingmutagenicitySrinivasanet.al,1995,Web-KBDatasetSlattery&Craven,1998,Faculty,GradStudent,ResearchProject,Other,CollectiveClassification,Traditionallearningmethodsassumethatobjectstobeclassifiedareindependent(thefirst“i”inthei.i.d.assumption)Instructureddata,theclassofanentitycanbeinfluencedbytheclassesofrelatedentities.Needtoassignclassestoallobjectssimultaneouslytoproducethemostprobableglobally-consistentinterpretation.,LogicalAIParadigm,RepresentsknowledgeanddatainabinarysymboliclogicsuchasFOPC.+Richrepresentationthathandlesarbitrarysetsofobjects,withproperties,relations,quantifiers,etc.Unabletohandleuncertainknowledgeandprobabilisticreasoning.,ProbabilisticAIP
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025辽宁师范大学面向海内外公开招聘数学学院院长、化学化工学院院长模拟笔试试题及答案解析
- 南充经济开发区投资集团有限公司2025年招聘备考笔试题库及答案解析
- 2026年西安培华学院单招职业倾向性测试题库及完整答案详解1套
- 2026年甘肃省白银市单招职业倾向性考试题库及参考答案详解1套
- 2026年湖北体育职业学院单招职业适应性测试题库及参考答案详解1套
- 2026年郑州电力职业技术学院单招职业技能测试题库带答案详解
- 2026年郑州工业应用技术学院单招职业适应性测试题库参考答案详解
- 2026年广东舞蹈戏剧职业学院单招职业倾向性考试题库及参考答案详解
- 2026年郑州职业技术学院单招职业倾向性考试题库及答案详解一套
- 2026年重庆电信职业学院单招职业技能测试题库及完整答案详解1套
- 译林版英语三年级上册Unit 6测试卷
- 2025-2026学年内蒙古呼和浩特市部分学校七年级(上)期中数学试卷(含简略答案)
- 2026年高考时政热点学习167条
- 弘扬宪法精神
- 南充临江建设发展集团有限责任公司2025年下半年公开招聘工作人员考试笔试参考题库附答案解析
- 自动化生产线机械结构设计
- 偏头痛护理查房
- 2024版十八项医疗质量安全核心制度全解析
- 罗森塔尔效应
- 2025年档案工作的工作总结和计划(5篇)
- 蔡司显微镜S88课件
评论
0/150
提交评论