广东省九年级数学一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法1课件(B层)北师大版.pptx_第1页
广东省九年级数学一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法1课件(B层)北师大版.pptx_第2页
广东省九年级数学一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法1课件(B层)北师大版.pptx_第3页
广东省九年级数学一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法1课件(B层)北师大版.pptx_第4页
广东省九年级数学一元二次方程2.2用配方法求解一元二次方程第1课时直接开平方法与配方法1课件(B层)北师大版.pptx_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2.2用配方法求解一元二次方程,第二章一元二次方程,导入新课,讲授新课,当堂练习,课堂小结,第1课时直接开平方法与配方法(1),1.会用直接开平方法解形如(x+m)2n(n0)的方程.(重点)2.理解配方法的基本思路.(难点)3.会用配方法解二次项系数为1的一元二次方程.(重点),学习目标,1.如果x2=a,则x叫做a的.,导入新课,复习引入,平方根,2.如果x2=a(a0),则x=.,3.如果x2=64,则x=.,8,4.任何数都可以作为被开方数吗?,负数不可以作为被开方数.,讲授新课,问题:一桶油漆可刷的面积为1500dm2,李林用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?,解:设正方体的棱长为xdm,则一个正方体的表面积为6x2dm2,可列出方程,106x2=1500,,由此可得,x2=25,开平方得,即x1=5,x2=5.,因棱长不能是负值,所以正方体的棱长为5dm,x=5,,试一试:解下列方程,并说明你所用的方法,与同伴交流.,(1)x2=4,(2)x2=0,(3)x2+1=0,解:根据平方根的意义,得x1=2,x2=-2.,解:根据平方根的意义,得x1=x2=0.,解:根据平方根的意义,得x2=-1,因为负数没有平方根,所以原方程无解.,(2)当p=0时,方程(I)有两个相等的实数根=0;,(3)当p0时,根据平方根的意义,方程(I)有两个不等的实数根,;,例1利用直接开平方法解下列方程:,解:,(1)x2=6,,直接开平方,得,(2)移项,得,x2=900.,直接开平方,得,x=30,,x1=30,x2=30.,典例精析,在解方程(I)时,由方程x2=25得x=5.由此想到:(x+3)2=5,得,对照上面方法,你认为怎样解方程(x+3)2=5,探究交流,于是,方程(x+3)2=5的两个根为,上面的解法中,由方程得到,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样就把方程转化为我们会解的方程了.,解题归纳,例2解下列方程:(x1)2=2;,解析:第1小题中只要将(x1)看成是一个整体,就可以运用直接开平方法求解.,解:(1)x+1是2的平方根,,x+1=,解析:第2小题先将4移到方程的右边,再同第1小题一样地解.,例2解下列方程:(2)(x1)24=0;,即x1=3,x2=-1.,解:(2)移项,得(x-1)2=4.,x-1是4的平方根,,x-1=2.,(3)12(32x)23=0.,解析:第3小题先将3移到方程的右边,再两边都除以12,再同第1小题一样地去解,然后两边都除以-2即可.,解:(3)移项,得12(3-2x)2=3,,两边都除以12,得(3-2x)2=0.25.,3-2x是0.25的平方根,,3-2x=0.5.,即3-2x=0.5,3-2x=-0.5,1.能用直接开平方法解的一元二次方程有什么特点?,如果一个一元二次方程具有x2=p或(xn)2=p(p0)的形式,那么就可以用直接开平方法求解.,2.任意一个一元二次方程都能用直接开平方法求解吗?请举例说明.,探讨交流,问题1.你还记得吗?填一填下列完全平方公式.,(1)a2+2ab+b2=()2;,(2)a2-2ab+b2=()2.,a+b,a-b,探究交流,问题2.填上适当的数或式,使下列各等式成立.,(1)x2+4x+=(x+)2,(2)x2-6x+=(x-)2,(3)x2+8x+=(x+)2,(4),x2-x+=(x-)2,你发现了什么规律?,22,2,32,3,42,4,二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.,归纳总结,想一想:x2+px+()2=(x+)2,配方的方法,合作探究,怎样解方程:x2+6x+4=0(1),问题1方程(1)怎样变成(x+n)2=p的形式呢?,解:,x2+6x+4=0,x2+6x=-4,移项,x2+6x+9=-4+9,两边都加上9,二次项系数为1的完全平方式:常数项等于一次项系数一半的平方.,方法归纳,在方程两边都加上一次项系数一半的平方.注意是在二次项系数为1的前提下进行的.,问题2为什么在方程x2+6x=-4的两边加上9?加其他数行吗?,不行,只有在方程两边加上一次项系数一半的平方,方程左边才能变成完成平方x2+2bx+b2的形式.,方程配方的方法:,要点归纳,像上面这样通过配成完全平方式来解一元二次方程,叫做配方法.,配方法的定义,配方法解方程的基本思路,把方程化为(x+n)2=p的形式,将一元二次方程降次,转化为一元一次方程求解,例3:解方程x2+8x-9=0,解:可以把常数项移到方程的右边,得x2+8x=9,两边都加42(一次项系数8的一半的平方),得x2+8x+42=9+42,即(x+4)2=25.两边开平方,得x+4=5,即x+4=5或x+4=-5.所以x1=1,x2=-9.,试一试:解决梯子底部滑动问题:x2+12x-15=0.,解:可以把常数项移到方程的右边,得x2+12x=15,两边都加62(一次项系数6的一半的平方),得x2+12x+62=15+62,即(x+6)2=51.两边开平方,得x+6=,即x+6=或x+6=.所以x1=,x2=.,当堂练习,(D)(2x+3)2=25,解方程,得2x+3=5,x1=1;x2=-4,1.下列解方程的过程中,正确的是(),(A)x2=-2,解方程,得x=,(B)(x-2)2=4,解方程,得x-2=2,x=4,D,(1)方程x2=0.25的根是.(2)方程2x2=18的根是.(3)方程(2x-1)2=9的根是.,3.解下列方程:(1)x2-810;(2)2x250;(3)(x1)2=4.,x1=0.5,x2=-0.5,x13,x2-3,x12,x21,2.填空:,解:x19,x29;,解:x15,x25;,解:x11,x23.,4.(请你当小老师)下面是李昆同学解答的一道一元二次方程的具体过程,你认为他解的对吗?如果有错,指出具体位置并帮他改正.,解:,解:不对,从开始错,应改为,解:,方程的两根为,5.解下列方程:,解:(1)移项,得,x28x=1,配方,得,x28x+42=1+42,(x4)2=15,由此可得,即,解方程:,挑

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论