




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程解法因式分解、配方法知识点回顾:定义:只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程 一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式 一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项 解法一 直接开方法适用范围:可解部分一元二次方程直接开平方法就是用直接开平方求解一元二次方程的方法。用直接开平方法解形如(x-m)2=n (n0)的方程,其解为x=mn归纳小结:共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程我们把这种思想称为“降次转化思想” 由应用直接开平方法解形如x2=p(p0),那么x=转化为应用直接开平方法解形如(mx+n)2=p(p0),那么mx+n=,达到降次转化之目的若p0则方程无解自主练习:1:用直接开平方法解下列方程:(1); (2); (3) (4) (5); (6); (7);2. 关于的方程的根 ,3. 关于的方程的解为 解法二分解因式法适用范围:可解部分一元二次方程因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”。因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。解下列方程 (1)2x2+x=0 (2)3x2+6x=0上面两个方程中都没有常数项;左边都可以因式分解:2x2+x=x(2x+1),3x2+6x=3x(x+2) 因此,上面两个方程都可以写成:(1)x(2x+1)=0 (2)3x(x+2)=0因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是:(1)x=0或2x+1=0,所以x1=0,x2=- (2)3x=0或x+2=0,所以x1=0,x2=-2因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法例1解方程 (1)4x2=11x (2)(x-2)2=2x-4 分析:(1)移项提取公因式x;(2)等号右侧移项到左侧得-2x+4提取-2因式,即-2(x-2),再提取公因式x-2,便可达到分解因式;一边为两个一次式的乘积,另一边为0的形式 解:(1)移项,得:4x2-11x=0 因式分解,得:x(4x-11)=0 于是,得:x=0或4x-11=0 x1=0,x2= (2)移项,得(x-2)2-2x+4=0 (x-2)2-2(x-2)=0 因式分解,得:(x-2)(x-2-2)=0 整理,得:(x-2)(x-4)=0 于是,得x-2=0或x-4=0 x1=2,x2=4 例2已知9a2-4b2=0,求代数式的值 分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误 解:原式= 9a2-4b2=0 (3a+2b)(3a-2b)=0 3a+2b=0或3a-2b=0,a=-b或a=b 当a=-b时,原式=-=3, 当a=b时,原式=-3 例3(十字相乘法)我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程 (1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0上面这种方法,我们把它称为十字相乘法一:用因式分解法解下列方程:(1)y27y60; (2)t(2t1)3(2t1); (3)(2x1)(x1)1 (4)x212x0;(5)4x210; (6)x27x;(7)x24x210;(8)(x1)(x3)12; (9)3x22x10; (10)10x2x30;(11)(x1)24(x1)210解法三配方法适用范围:可解全部一元二次方程 引例:x2+6x-16=0 x2+6x-16=0移项x2+6x=16两边加(6/2)2使左边配成x2+2bx+b2的形式 x2+6x+32=16+9左边写成平方形式 (x+3)2=25 降次x+3=5 即 x+3=5或x+3=-5 解一次方程x1=2,x2= -8像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解配方法解一元二次方程的一般步骤:(1)先将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;(5)变形为(x+p)2=q的形式,如果q0,方程的根是x=-pq;如果q0,方程无实根用配方法解一元二次方程小口诀 二次系数化为一;常数要往右边移;一次系数一半方;两边加上最相当例1用配方法解下列关于x的方程 (1)x2-8x+1=0 (2)x2-2x-=0 分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上例3解下列方程 (1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0分析:我们已经介绍了配方法,因此,我们解这些方程就可以用配方法来完成,即配一个含有x的完全平方拓展题用配方法解方程(6x+7)2(3x+4)(x+1)=6 分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法 解:设6x+7=y 则3x+4=y+,x+1=y- 依题意,得:y2(y+)(y-)=6 去分母,得:y2(y+1)(y-1)=72 y2(y2-1)=72, y4-y2=72 (y2-)2= y2-= y2=9或y2=-8(舍) y=3 当y=3时,6x+7=3 6x=-4 x=- 当y=-3时,6x+7=-3 6x=-10 x=- 所以,原方程的根为x1=-,x2=-例5. 求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.一元二次方程解法因式分解、配方法2013-7-14 (李老师) 姓名: (一)1下面一元二次方程解法中,正确的是( ) A(x-3)(x-5)=102,x-3=10,x-5=2,x1=13,x2=7 B(2-5x)+(5x-2)2=0,(5x-2)(5x-3)=0,x1= ,x2= C(x+2)2+4x=0,x1=2,x2=-2 Dx2=x 两边同除以x,得x=12下列命题方程kx2-x-2=0是一元二次方程;x=1与方程x2=1是同解方程;方程x2=x与方程x=1是同解方程;由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( ) A0个 B1个 C2个 D3个3如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( ) A- B-1 C D14x2-5x因式分解结果为_;2x(x-3)-5(x-3)因式分解的结果是_5方程(2x-1)2=2x-1的根是_6二次三项式x2+20x+96分解因式的结果为_;如果令x2+20x+96=0,那么它的两个根是_7.方程x(x) x的解为_8用因式分解法解下列方程(1)3y2-6y=0 (2)25y2-16=0 (3)x2-12x-28=0 (4)x2-12x+35=09已知(x+y)(x+y-1)=0,求x+y的值 (二)1配方法解方程2x2-x-2=0应把它先变形为( ) A(x-)2= B(x-)2=0 C(x-)2= D(x-)2=2下列方程中,一定有实数解的是( ) Ax2+1=0 B(2x+1)2=0 C(2x+1)2+3=0 D(x-a)2=a3已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是( ) A1 B2 C-1 D-24将二次三项式x2-4x+1配方后得( ) A(x-2)2+3 B(x-2)2-3 C(x+2)2+3 D(x+2)2-35已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( )Ax2-8x+(-4)2=31 Bx2-8x+(-4)2=1 Cx2+8x+42=1 Dx2-4x+4=-11 6如果mx2+2(3-2m)x+3m-2=0(m0)的左边是一个关于x的完全平方式,则m等于( ) A1 B-1 C1或9 D-1或97方程x2+4x-5=0的解是_8.方程左边配成一个完全平方式,所得的方程是 9代数式的值为0,则x的值为_10已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_,所以求出z的值即为x+y的值,所以x+y的值为_11无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_数12如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是_13用配方法解方程(1)9y2-18y-4=0 (2)x2+3=2x(3) (4) (5) (6)14如果x2-4x+y2+6y+13=0,求(xy)z的值15.用配方法证明:(1)的值恒为正; (2)的值恒小于0(3)多项式的值总大于的值16.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 水表井安全知识培训课件
- 隧道回填土质量控制方案
- 小学五年级英语上册Unit6单元重难点知识速记与巧练(含答案)
- 混凝土结构的加固与修复方案
- 临时水泥搅拌站安装与管理方案
- 糖皮质激素药理作用112课件
- 水的分层与融合课件
- 水电站安全知识培训课件
- 水电气安全知识培训总结课件
- 2025版燃气供应及节能改造合同模板
- 寿险财务流程管理办法
- 《老年人生活能力康复训练》养老服务与管理专业全套教学课件
- 徒手整形培训课件
- 运动康复概论讲课件
- 乡镇密码电报管理制度
- 村级络监控安装方案(3篇)
- 潜水员入场安全教育试卷(含答案)
- 供热有限公司安全风险辨识和隐患排查治理双重预防模板
- 癌性爆发痛的护理2
- 体外诊断试剂生产实施细则(解释版本)
- 住院阿尔茨海默病患者安全管理专家共识解读
评论
0/150
提交评论