零阶保持器ppt课件_第1页
零阶保持器ppt课件_第2页
零阶保持器ppt课件_第3页
零阶保持器ppt课件_第4页
零阶保持器ppt课件_第5页
已阅读5页,还剩168页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七章采样数据控制系统分析,7.1概述,一、采样控制系统采样控制系统,又称断续控制系统、离散控制系统,它是建立在采样信号基础上的。如果控制系统中有一处或几处信号是断续的脉冲或数码,则这样的系统称为离散系统。通常,把系统中的离散信号是脉冲序列形式的离散系统,称为采样控制系统;而把数字序列形式的离散系统,称为数字控制系统或计算机控制系统。,采用采样控制:,工业炉的温度自动控制系统的框图:,二、数字控制系统,数字控制系统是一种以数字计算机或微处理器控制具有连续工作状态的被控对象的闭环控制系统。因此,数字控制系统包括工作于离散状态下的数字计算机或微处理器和工作于连续状态下的被控对象两大部分。,三、研究方法,主要阐述采样系统所必要的数学基础和基本原理。首先建立信号采样与复现过程的数学表达式;介绍Z变换理论和脉冲传递函数;讨论采样系统的稳定性、稳态误差;分析系统的极点分布与瞬态响应之间的关系。,7.2信号的采样与保持,一、采样过程,把连续信号转换成离散信号的过程,叫作采样过程。,实现采样的装置叫作采样开关或采样器。,为两个单位阶跃函数之差,表示一个在kT时刻,高度为1,宽度为,面积为的矩形。,将持续时间移至和式外,取采样过程的数学描述为,或写作,式中T(t)称为单位理想脉冲序列,而e*(t)即为加权理想脉冲序列。,采样过程的物理意义:采样过程可以看作是单位理想脉冲串T(t)被输入信号e(t)进行幅值调制的过程,其中T(t)为载波信号,e(t)为调制信号,采样开关为幅值调制器,其输出为理想脉冲序列e*(t)。,二、采样定理,采样过程中信号频谱的变化。,是一个周期函数,将其展开成傅里叶级数:,式中称为系统的采样角频率。,系数,上式两边取拉氏变换,并由拉氏变换的复数位移定理,得到,如果E*(j)没有右半平面的极点,则令s=j,得到,(a)连续信号e(t)的频谱,(b),(c),如果对一个具有有限频谱的连续信号进行采样,当采样频率满足时,则由采样得到的离散信号能无失真地恢复到原来的连续信号,这就是采样定理,也称为香农(Shannon)定理。,物理意义:如果选择这样一个采样角频率,使得对连续信号中所含的最高频率信号来说,能做到在其一个周期内采样两次以上,则在经采样所获得的离散信号中将包含连续信号的全部信息。反之,如果采样次数太少,就做不到无失真地再现原连续信号。,三、采样周期的选择,采样周期选得越小,即采样角频率越高,对控制过程的信息获得的便越多,控制效果也会也好;采样周期选得过小,将增加不必要的数据处理负担;一般的工业过程控制,采样周期在120s范围内选择;,对于伺服控制系统,采样角频率可选为闭环系统的频带宽度b或开环系统的穿越频率c的10倍,即从时域性能指标来看:或,四、信号的再现和保持器,把采样信号转变为连续信号的过程,称为信号再现。,用于转换过程的装置,称为保持器。,从数学意义上说,保持器的功能是解决各采样点之间的插值问题。,实际上,保持器是具有外推功能的元件。,具有常值外推功能的保持器,称为零阶保持器。,零阶保持器的作用是使采样信号e*(t)每一采样瞬时的值e(kT)一直保持到下一个采样瞬时e(k+1)T,从而使采样信号变成阶梯信号eh(t)。由于处在每个采样区间内的信号值为常数,其导数为零,故称为零阶保持器。,保持器的传递函数和频率特性:,零阶保持器输入单位脉冲时,其输出为一个高度为1、宽度为T的矩形波gh(t),称为脉冲过渡函数。,由于,其拉氏变换,用j代替s,得到频率特性,因为,所以,零阶保持器的频率特性:,信号的采样与保持过程,7.3Z变换与Z反变换,一、Z变换,采样信号的数学表达式,进行拉氏变换,引入一个新的复变量,z是用复数z平面来定义的一个新变量,Z变换的定义式,记作,也可以写为,将定义式展开,一般项的物理意义:e(kT)表征采样脉冲的幅值,z的幂级数表征采样脉冲出现的时刻。,二、典型信号的z变换,1.单位脉冲函数:,设e(t)=(t),所以有,2.单位阶跃信号:,设e(t)=1(t),则,3.单位理想脉冲序列:,设,则,阶跃信号采样后与单位理想脉冲串是一样的,而Z变换是对采样点上的信息有效,只要e*(t)相同,E(z)就相同。,4.单位斜坡信号:,上式两边对z求导数,并将和式与导数交换,得,两边同乘(-Tz),得单位斜坡信号的Z变换,设e(t)=t,则,5.指数函数:,设e(t)=e-at(a为实常数),则,6.正弦信号:,设e(t)=sint,因为,所以,7.设,求e*(t)的Z变换。,将E(s)进行部分分式展开,再求其拉氏反变换,三、Z变换的基本定理,线性定理若已知e1(t)和e2(t)的Z变换分别为E1(z)和E2(z),且a1和a2为常数。则有,证明:由Z变换的定义,2.实数位移定理若e(t)的Z变换为E(z),则有,实数位移定理表明:函数在时域内延迟n个采样周期时,反映在Z域内,它的Z变换函数乘以z-n;函数在时域内超前n个采样周期,只要满足0k(n-1)时,e(kT)=0,则在Z域内,它表现为Z变换函数乘上zn,否则必须将从k=0到k=n-1的初始值减去后,再乘上zn。,证明:,(1),由于j0时,e(jT)=0,所以和式下标取值从j=0开始,有,首先考虑n=1时,(2),同理,当n=2时,有,以此类推有,例试用实数位移定理,计算延迟一个采样周期的指数函数e-(t-T)的Z变换。,解:根据实数位移定理,从Z变换表中查得,代入上式得,3.复数位移定理,若已知e(t)的Z变换为E(z),则有,式中a为常数。,复数位移定理是仿照拉氏变换的复数位移定理导出的,其含义是函数e*(t)乘以指数序列eakT的Z变换,就等于在e*(t)的Z变换表达式E(z)中,以zeakT取代原算子z。,证明:根据Z变换定义,令,则,例利用复数位移定理计算函数e-atsint的Z变换。,解:由Z变换表查得sint的Z变换为,由复数定理,得,4.Z域微分定理,若e(t)的Z变换为E(z),则,证明:由于,将上式两边对z求导数,得,变换导数与和式的次序,所以,例利用Z域微分定理求单位斜坡函数t1(t)的Z变换。,证明:只要对阶跃函数的Z变换求导数再乘上-Tz,即,5.Z域尺度定理,若已知e(t)的Z变换为E(z)则,证明:因为,例试求kcost的Z变换。,解:由Z变换表,6.初值定理,若已知e(t)的Z变换为E(z),并有存在,则,证明:因为,所以,7.终值定理,若e(t)的Z变换为E(z),且E(z)在Z平面的单位圆上除1之外没有极点,在单位圆外解析,则,证明:由实数位移定理,两边取极限,并由Z变换定义有,所以,四、Z反变换,从z域函数E(z),求时域函数e*(t),称作Z反变换。,记作,1.部分分式展开法,部分分式展开法是将E(z)展成若干个分式和的形式,而每一个分式可通过表4-1查出所对应的时间函数e(t),并将其转变为采样函数e*(t)。,例已知Z变换函数,试求其Z反变换。,解:首先将E(z)/z展开成部分分式,所以,查表7-1有,所以,2.幂级数法(综合除法),通常E(z)是z的多项式,即,用分母除分子并将商按z-1的升幂排列,这是Z变换的定义式形式,其系数ck(k=0,1,2,)就是e(t)在采样时刻t=kT时刻的值e(kT)。,应用综合除法,解:,例已知试用综合除法求其Z反变换。,所以,3.反演积分法(留数法),已知e(t)的Z变换为E(z),则可以证明,e(t)在t=kT时刻的采样函数可由下面的反演积分计算:,其中表示包围E(z)zk-1全部极点的封闭曲线,根据复变函数的柯西定理,上式可以写为,即,式中,mE(z)中彼此不相同的极点个数;ziE(z)的极点,i=1,2,m;ri重极点zi的的个数。,由e(kT)可写出对应的原函数脉冲序列,即,解:,所以,例已知,试用反演积分法求e*(t)。,一、脉冲传递函数的定义,开环采样控制系统如图所示,如果输入信号为r(t),采样后信号r*(t)的Z变换为R(z),连续部分输出为c(t),采样后c*(t)的Z变换为C(z)。,7.4脉冲传递函数,若初始条件为零,则脉冲传递函数定义为输出采样信号的Z变换与输入采样信号的Z变换之比,用G(z)表示,零初始条件:指在t0时,输入脉冲序列各采样值r(-T),r(-2T),以及输出脉冲序列各采样值c(-T),c(-2T),均为零。,作Z反变换得,如果已知系统的脉冲传递函数G(z)及输入信号的Z变换R(z),那么就可得到输出采样信号的Z变换式,求解输出采样信号c*(t)的关键在于怎样求出系统的脉冲传递函数G(z)。但是对于大多数实际系统来说,其输出往往是连续信号c(t)而不是采样信号c*(t),在这种情况下,可以在输出端虚设一个采样开关,它与输入端采样开关一样以相同的周期同步工作。,系统在单位理想脉冲输入r(t)=(t)作用下的响应,称为单位脉冲响应,也称脉冲过渡函数。,二、开环系统(或环节)的脉冲传递函数,1.脉冲响应函数(Impulse-responsefunction),如果,或,又,所以,由上式给出的拉氏反变换就称为脉冲响应函数,即,若,则,也称为系统的加权函数,因此,传递函数与线性时不变系统的脉冲响应函数包含着相同的系统动态信息。以单位脉冲作用于系统,根据测定系统的脉冲响应函数,就可以求得被测系统的传递函数。,当初始条件为零时,脉冲响应函数g(t)就是单位脉冲输入时线性系统的响应。,2.脉冲传递函数的推导,如果在G(s)上输入的是(t-a),即单位脉冲延迟到t=a时刻才加上,那么输出信号也相应地延迟一段时间a,而成为g(t-a)。,现在研究一系列脉冲依次加到G(s)上的情况:,脉冲序列可表示为,首先计算各段时间内的输出c(t):,0tT时,输入脉冲为r*(t)=r(0)(t),输出为c(t)=g(t)r(0),将t=0代入得输出c(0)=g(0)r(0),Tt0,得,解得,结论:从上例可以看出,二阶连续系统只要K0总是稳定的;而二阶采样系统当增大K时,采样系统可能变为不稳定。一般来说,减小采样周期T,会使采样系统的工作接近于相应的连续系统,使采样系统的稳定性得到改善。,四、稳态误差,G(s)为连续部分的传递函数,e(t)为误差信号,e*(t)为采样误差信号,则系统的误差脉冲传递函数为,所以,假定e(z)的全部极点在z平面单位圆的内部,即系统是稳定的,用终值定理可以求出采样系统的稳态误差,1单位阶跃函数输入下的稳态误差,单位阶跃函数r(t)=1的变换式,将其代入上式,稳态误差为,定义静态位置误差系数,则,当G(z)中有一个以上z=1的极点时,Kp=,则,即在单位阶跃输入下系统的静态误差为零。换言之,在阶跃输入下,系统无静差的条件是G(z)中至少有一个z=1的极点。,2单位斜坡函数输入下的稳态误差,单位斜坡函数r(t)=t,其Z变换式,代入得稳态误差,定义静态速度误差系数,则,当G(z)中有两个以上z=1的极点时,Kv=,则,即在单位斜坡输入下,系统无静差的条件是G(z)中至少有两个z=1的极点。,3单位加速度函数输入下的稳态误差,单位加速度函数,其Z变换式,代入得,定义静态加速度误差系数,则,当G(z)中有三个以上z=1的极点时,Ka=,则,即在加速度输入下,系统无静差的条件是G(z)中至少有三个z=1的极点。,综上所述,采样系统在典型输入下的稳态误差与脉冲传递函数G(z)中z=1的极点数密切相关,这与连续系统传递函数G(s)中s=0的极点数完全对应。同样,把脉冲传递函数G(z)中z=1的极点数=0,1,2,的系统,称为0型、型、型和型采样系统等等。单位反馈系统在三种典型输入信号作用下的稳态误差,如表7-3所示。,表7.3典型输入作用下的稳态误差,上面讨论了单位反馈系统在三种典型输入信号作用下的稳态误差,以及稳态误差与静态误差系数之间的相互关系。这种方法可以推广到非单位反馈采样系统的稳态误差的计算。只要求出实际系统的误差Z变换函数,利用终值定理,同样可以得到相应的终值误差。,例采样系统结构如图所示,采样周期T=0.2s,输入信号r(t)=1+t+(1/2)t2,试计算系统的稳态误差。,(1)求G(z):因为有零阶保持器,故,解:计算分三步进行:,查变换表7-1得,将采样周期T=0.2代入上式,并化简得,(2)判别系统的稳定性:系统的特征方程,解方程得,z1,2均在单位圆内,故系统稳定。,(3)求稳态误差:,静态位置误差系数,静态速度误差系数,静态加速度误差系数,由表7.3,在r(t)=1+t+(1/2)t2作用下的稳态误差,五、闭环极点分布与动态响应的关系,在线性连续系统中,闭环极点在平面上的位置与系统的动态响应有着密切的关系。与连续系统类似,采样系统的闭环极点在平面上的分布对系统的动态响应起着决定性作用。,设系统的闭环脉冲传递函数,当输入信号r(t)=1(t)时,系统输出的Z变换为,假定(z)无重极点,将C(z)展开成部分分式,式中,式中第一项为稳态分量,第二项为瞬态分量,其中cipik是收敛还是发散、振荡,完全取决于极点pi在z平面上的分布。,于是,1正实轴上的实数极点,设pi为正实数。pi对应的瞬态分量为,(2)若pi=1,闭环极点位于右半z平面上的单位圆上,其动态响应是等幅脉冲序列。,(3)若pi1,闭环极点位于z平面上的单位圆外的正实轴上,其动态响应是按指数规律发散的脉冲序列。,(1)若0pi1,闭环极点位于z平面上单位圆内的正实轴上,其动态响应是按指数规律收敛的脉冲序列,且pi越靠近原点衰减越快。,若令,则上式可写为,(2)若pi=-1,闭环极点位于左半z平面上的单位圆上,其动态响应是正、负交替变号的等幅脉冲序列。,(3)若pi-1,闭环极点位于z平面上的单位圆外的正实轴上,其动态响应是正、负交替变号的发散脉冲序列。,2负实轴上的实数极点,(1)若-1pi0,闭环极点位于z平面上单位圆内的负实轴上,其动态响应是正、负交替变号的衰减振荡脉冲序列,且离原点越近,衰减越快。,若闭环实数极点位于右半z平面,则输出动态响应形式为单向正脉冲序列。实极点位于单位圆内,脉冲序列收敛,且实数极点越接近原点,收敛越快;实极点位于单位圆上,脉冲序列等幅变化;实极点位于单位圆外,脉冲序列发散。,若闭环实数极点位于左半z平面,则输出动态响应形式为双向交替正脉冲序列。实极点位于单位圆内,双向脉冲序列收敛,且实数极点越接近原点,收敛越快;实极点位于单位圆上,双向脉冲序列等幅变化;实极点位于单位圆外,双向脉冲序列发散。,设pi为共轭复根,其成对出现有pi,pi+1或pi,pi+1=|pi|ejk,对应的瞬态分量为,由于(z)的系数均为正数,所以ci,ci+1也必为共轭,即,3z平面上的闭环共轭复数极点,所以,,所以,共轭极点所对应的瞬态分量是以余弦规律振荡。振荡角频率与共轭极点的幅角i有关,i越大,振荡角频率越高。,(1)若|pi|1,闭环复数极点位于z平面上的单位圆外,其动态响应是振荡发散的脉冲序列。,由图可见:位于z平面上单位圆内的共轭复数极点,对应输出动态响应的形式为振荡收敛脉冲序列,但复数极点位于左半单位圆内所对应的振荡频率,要高于右半单位圆内的情况。,综上所述,采样系统的动态特性与闭环极点的分布密切相关。当闭环实极点位于z平面上左半单位圆内时,由于输出衰减脉冲交替变号,故动态过程质量很差;当复数极点位于z平面上左半单位圆内时,由于输出衰减高频振荡脉冲,故动态过程性能欠佳。因此,在采样系统设计时,应把闭环极点安置在z平面上右半单位圆内,且尽量靠近原点。,六、采样系统的时域响应,如果已知系统的闭环脉冲传递函数及典型输入信号的Z变换,可以求出输出信号的Z变换C(z),然后经Z反变换求出输出信号的脉冲序列c*(t)。它表示采样系统在典型输入作用下的时域响应过程,从而分析采样系统的动态和稳态性

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论