




已阅读5页,还剩81页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.3二元一次不等式(组)与简单的线性规划问题,基础知识自主学习,课时作业,题型分类深度剖析,内容索引,基础知识自主学习,(1)一般地,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0某一侧所有点组成的.我们把直线画成虚线以表示区域边界直线.当我们在坐标系中画不等式AxByC0所表示的平面区域时,此区域应边界直线,则把边界直线画成.(2)由于对直线AxByC0同一侧的所有点(x,y),把它的坐标(x,y)代入AxByC,所得的符号都,所以只需在此直线的同一侧取一个特殊点(x0,y0)作为测试点,由Ax0By0C的即可判断AxByC0表示的直线是AxByC0哪一侧的平面区域.,1.二元一次不等式表示的平面区域,知识梳理,平面区域,不包括,实线,包括,符号,相同,2.线性规划相关概念,一次,最大值,最小值,一次,线性约束条件,可行解,最大值,最小值,最大值,最小值,画二元一次不等式表示的平面区域的直线定界,特殊点定域:(1)直线定界:不等式中无等号时直线画成虚线,有等号时直线画成实线;(2)特殊点定域:若直线不过原点,特殊点常选原点;若直线过原点,则特殊点常选取(0,1)或(1,0)来验证.,3.重要结论,1.利用“同号上,异号下”判断二元一次不等式表示的平面区域对于AxByC0或AxByC0时,区域为直线AxByC0的上方;(2)当B(AxByC)0表示的平面区域一定在直线AxByC0的上方.()(3)点(x1,y1),(x2,y2)在直线AxByC0同侧的充要条件是(Ax1By1C)(Ax2By2C)0,异侧的充要条件是(Ax1By1C)(Ax2By2C)0.(),(4)第二、四象限表示的平面区域可以用不等式xy0表示.()(5)线性目标函数的最优解是唯一的.()(6)最优解指的是使目标函数取得最大值或最小值的可行解.()(7)目标函数zaxby(b0)中,z的几何意义是直线axbyz0在y轴上的截距.(),1.下列各点中,不在xy10表示的平面区域内的是A.(0,0)B.(1,1)C.(1,3)D.(2,3),考点自测,答案,解析,答案,解析,A.0B.3C.4D.5,答案,解析,几何画板展示,答案,解析,由2(2)3t60,,4.若点(2,t)在直线2x3y60的上方,则t的取值范围是_.,5.(教材改编)投资生产A产品时,每生产100吨需要资金200万元,需场地200平方米;投资生产B产品时,每生产100吨需要资金300万元,需场地100平方米.现某单位可使用资金1400万元,场地900平方米,则上述要求可用不等式组表示为_(用x,y分别表示生产A,B产品的吨数,x和y的单位是百吨).,答案,解析,用表格列出各数据,所以不难看出,x0,y0,200 x300y1400,200 x100y900.,题型分类深度剖析,例1(1)不等式(x2y1)(xy3)0在坐标平面内表示的区域(用阴影部分表示),应是下列图形中的,题型一二元一次不等式(组)表示的平面区域,命题点1不含参数的平面区域问题,答案,解析,答案,解析,命题点2含参数的平面区域问题,答案,解析,又当m3时,不满足题意,应舍去,m1.,答案,解析,几何画板展示,不等式组表示的平面区域如图所示.,思维升华,(1)求平面区域的面积:首先画出不等式组表示的平面区域,若不能直接画出,应利用题目的已知条件转化为不等式组问题,从而再作出平面区域;对平面区域进行分析,若为三角形应确定底与高,若为规则的四边形(如平行四边形或梯形),可利用面积公式直接求解,若为不规则四边形,可分割成几个三角形分别求解再求和即可.(2)利用几何意义求解的平面区域问题,也应作出平面图形,利用数形结合的方法去求解.,答案,解析,直线ykx1过定点M(0,1),由图可知,当直线ykx1经过直线yx1与直线xy3的交点C(1,2)时,k最小,,A.1B.1C.0D.2,答案,解析,题型二求目标函数的最值问题,命题点1求线性目标函数的最值,答案,解析,命题点2求非线性目标函数的最值,解答,几何画板展示,如图中阴影部分所示.,z的取值范围是2,).,(2)若zx2y2,求z的最大值与最小值,并求z的取值范围.,解答,zx2y2表示可行域内的任意一点与坐标原点之间距离的平方.因此x2y2的最小值为OA2,最大值为OB2.,z的取值范围是1,5.,引申探究,解答,2.若zx2y22x2y3.求z的最大值、最小值.,解答,命题点3求参数值或取值范围,5,答案,解析,显然,当m2时,不等式组表示的平面区域是空集;当m2时,不等式组表示的平面区域只包含一个点A(1,1).此时zmin1101.显然都不符合题意.,平面区域为一个三角形区域,,由图可知,当直线yxz经过点C时,z取得最小值,,答案,解析,作出不等式组表示的可行域,如图(阴影部分).,思维升华,(1)先准确作出可行域,再借助目标函数的几何意义求目标函数的最值.(2)当目标函数是非线性的函数时,常利用目标函数的几何意义来解题,,(3)当目标函数中含有参数时,要根据临界位置确定参数所满足的条件.,答案,解析,平移直线zxy,易知当直线zxy经过点C(0,3)时,目标函数zxy取得最小值,即zmin3.,答案,解析,题型三线性规划的实际应用问题,例6某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.(1)试用每天生产的卫兵个数x与骑兵个数y表示每天的利润(元);,解答,(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?,解答,目标函数为2x3y300,作出可行域,如图所示,作初始直线l0:2x3y0,平移l0,当l0经过点A时,有最大值,,最优解为A(50,50),此时max550元.故每天生产卫兵50个,骑兵50个,伞兵0个时利润最大,且最大利润为550元.,思维升华,解线性规划应用问题的一般步骤(1)审题:仔细阅读材料,抓住关键,准确理解题意,明确有哪些限制条件,借助表格或图形理清变量之间的关系.(2)设元:设问题中起关键作用(或关联较多)的量为未知量x,y,并列出相应的不等式组和目标函数.(3)作图:准确作出可行域,平移找点(最优解).(4)求解:代入目标函数求解(最大值或最小值).(5)检验:根据结果,检验反馈.,答案,解析,如图所示,画出约束条件所表示的区域,即可行域,作直线l:ba0,平移直线l,再由a,bN,可知当a6,b7时,xmaxab13.,含参数的线性规划问题,现场纠错系列8,(1)含参数的平面区域问题,要结合直线的各种情况进行分析,不能凭直觉解答.(2)目标函数含参的线性规划问题,要根据z的几何意义确定最优解,切忌搞错符号.,错解展示,典例(1)在直角坐标系xOy中,若不等式组表示一个三角形区域,则实数k的取值范围是_.(2)已知x,y满足约束条件若zaxy的最大值为4,则a_.,现场纠错,纠错心得,解析(1)如图,直线yk(x1)1过点(1,1),作出直线y2x,当k2时,不等式组表示一个三角形区域.(2)由不等式组表示的可行域,可知zaxy在点A(1,1)处取到最大值4,a14,a3.答案(1)(,1)(0,2)(2,)(2)3,返回,解析(1)直线yk(x1)1过定点(1,1),当这条直线的斜率为负值时,该直线与y轴的交点必须在坐标原点上方,即直线的斜率为(,1),只有此时可构成三角形区域.,(2)作出不等式组表示的可行域如图中阴影部分所示.,zaxy等价于yaxz,因为z的最大值为4,,即直线yaxz的纵截距最大为4.若zaxy在A(1,1)处取得最大值,则纵截距必小于2,故只有直线yaxz过点(2,0)且a0时符合题意,4a20,即a2.答案(1)(,1)(2)2,返回,课时作业,1.已知点(3,1)和点(4,6)在直线3x2ya0的两侧,则a的取值范围为A.(24,7)B.(7,24)C.(,7)(24,)D.(,24)(7,),答案,解析,由3(3)2(1)a342(6)a0,得(a7)(a24)0,7a24.,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,3.直线2xy100与不等式组表示的平面区域的公共点有,答案,解析,A.0个B.1个C.2个D.无数个,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,由不等式组画出可行域的平面区域如图(阴影部分).直线2xy100恰过点A(5,0),且其斜率k20时,要使zyax取得最大值的最优解不唯一,则a2;当a0)仅在点(3,0)处取得最大值,则a的取值范围是_.,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,3,答案,解析,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,画出可行域如图阴影部分所示,,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,答案,解析,6,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,14.已知D是以点A(4,1),B(1,6),C(3,2)为顶点的三角形区域(包括边界与内部).如图所示.(1)写出表示区域D的不等式组;,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,(2)设点B(1,6),C(3,2)在直线4x3ya0的异侧,求a的取值范围.,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,15.某客运公司用A、B两种型号的车辆承担甲、乙两地间的长途客运业务,每辆车每天往返一次.A、B两种车辆的载客量分别为36人和60人,从甲地去乙地的营运成本分别为1600元/辆和2400元/辆,公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天运送人数不少于900,且使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?,解答,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,设A型、B型车辆分别为x、y辆,相应营运成本为z元,则z1600 x2400y.由题意,得x,y满足约束条件,1,2,3,4,5,6,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025有关学校食堂餐饮服务合同
- 2025商业银行劳动合同
- 孤儿成长心理辅导面试题及答案解析
- 2025有关技术授权的合同
- 工作主题:农业人才招募策略研究面试题及答案分享
- 广西空港面试技巧与题库分享
- 求职路上智慧导航:新连加连减面试题目及答案
- 农地流转风险评估方法-洞察及研究
- 2025邮政考试题库及答案江西省
- 2025年事业单位工勤技能-青海-青海计算机信息处理员四级中级历年参考题库含答案解析(5套)
- 【《惠东农商银行个人信贷业务发展现状及存在的问题和策略分析》15000字】
- 光伏项目开发培训课件
- 职业年金政策讲解
- 智联猎头企业薪酬调研白皮书-2025年年中盘点
- 基孔肯雅热、登革热等重点虫媒传染病防控技术试题
- 消防设施操作员(监控方向)中级模拟考试题及答案
- 2025年事业单位教师考试公共基础知识试题(含答案)
- 2025年可靠性工程师MTBF计算强化练习
- 2025秋季学期中小学学校学生校服采购工作方案
- 乳房肿块鉴别诊断
- 关于茶叶的幼儿课件
评论
0/150
提交评论