




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆锥的体积说课稿 大家好!今天我说课的内容是六年级数学(人教版)下册第二单元圆柱和圆锥中的第二课时圆锥的体积。本次说课包括五个内容:说教材、说教法、说学法、说教学程序和说板书。一、说教材1、教材分析“圆锥的体积”教学是在学生学习了立体图形长方体、正方体、圆柱体的基础上,认识了圆柱和圆锥的特征,会计算圆柱的表面积、体积的基础上进行教学的。教材突出了探索体积计算公式的过程,引导学生在装沙或装米的实验基础上进行公式推导。通过观察,比较,分析,推理,概括和抽象,自主发现圆锥的体积计算公式,进一步积累数学活动经验.经历数学化的过程,获得解决问题的方法.2、学情分析学生以前学习了长方体、正方体,在此前又学了由曲面和圆围成的立体图形圆柱,且经历了圆柱体积计算方法的推导过程,具有了初步的类比思维意识。通过前一节圆锥的认识,学生对圆锥的特征也有了一些了解,对学生来说,求体积并非陌生的新知识,只是像圆锥这样学生认为不规则几何体的图形,求体积有困难。对于六年级的学生来说, 绝大多数学生的动手实践能力比较强,有一定的空间观念基础,但公式的推导过程却比较抽象、枯燥,对于他们来说该部分内容是一个难点。同时对于圆锥体积计算的实际运用,从以往的经验判断,学生对3倍的关系难以理解,教师应帮助学生理解。3、教学目标知识与技能目标:通过学生参与实验,从而推导出圆锥体积的计算公式,并运用公式计算圆锥的体积;解决一些有关圆锥体积的实际问题。过程与方法目标: 通过实验推导圆锥体积公式的过程,增强学生的实践操作能力,并培养学生观察、比较、分析、总结归纳的学习方法。情感与价值目标:通过实验,引导学生探索知识的内在联系,渗透转化思想,并感受发现知识的快乐,激发学习的兴趣,感受数学与生活的密切联系,培养学数学、用数学的乐趣。4、教学重难点教学重点:理解和掌握公式,能正确运用公式解决实际问题教学难点:圆锥体积公式的推导过程5、教具、学具准备教具:一个圆柱、2个与圆柱等底、等高的圆锥、沙子;学生自制的圆柱及各类型的圆锥若干、三角尺、直尺二、说教法在公式推导阶段,为了打破枯燥无味的公式推导过程,在教授本节课时,结合小学生的认知规律,以引导法、实验法、观察法,探索法为主,以讨论法、练习法为辅,实现教学目标。在教学中,从:、让学生测量自制圆柱、圆锥的高(在上一节让学生自己动手制作圆柱、圆锥);、让学生用自制的等底等高、等高不等底、等底不等高圆柱与圆锥分别装沙实验入手。通过学生自己动手测量、实验操作后总结实验规律。通过小组实验、讨论、交流,归纳、推导出圆锥体积的计算公式:在公式运用方面:采取逐步深入的模式,让学生讨论在:、已知圆锥的高与底面半径;、已知圆锥的高与底面直径;、已知圆锥的高与底面周长三种情况下,如何使用公式计算。然后通过让学生列举身边的实例,引入实际运用。这样,既充分发挥了学生的主体作用,又调动学生积极主动地参与教学的全过程。力求为学生创造一个自主探索与合作交流的环境,引导学生主动去从事观察、猜想、实验、验证、推理与交流等数学活动,从而使学生形成自己对数学知识的理解和有效的学习策略。三、说学法以往的教学是教师处于主导地位,学生基本上是处于被动的听讲,被灌输者的被动地位,这样教出来的学生没有灵活性,随机应变的能力差,发现问题,分析问题,解决问题的能力差,学生的情感也低落。新课改要求:教师要把课堂和时间还给学生,让学生有充足的时间和广阔的空间学习、探讨、商量、研究,教师只是学生学习的指导者和参与者。 针对本节,在学法上主要采取: 1、学生在学习圆锥体积公式的推导时,通过自己动手进行操作实验、观察比较、讨论小结,最终推导出圆锥的计算公式,从而初步学会运用实验的方法来探索新知识。2、充分发挥学生的主体作用:学生能做的尽量让学生自己做,学生能想的尽量让学生自己想,学生能说的尽量让学生自己说。学生不能想的,教师启发、引导学生想。3、教师提出与所学课程内容有关的恰当合理的问题,让学生在分析、讨论、探索的前提下争取自己解决,对于有一定困难的问题,老师再从中提醒、点拨。从而挖掘学生的潜能,让他们体验学习成功的乐趣,调动学生学习的积极性和主动性,发挥学生的主体作用,养成良好的学习习惯。四、说教学程序本节课的教学,我安排了6个教学程序:1、学生自主探索,预习第一步:回忆圆锥的认识(1) 让学生将他们准备的沙子或米拿到老师这里来,我们玩堆沙子游戏。我把它倒在桌子上,缓慢地倒,形成一个近似的圆锥,你们看这是什么形状?引导学生从沙堆的形状:底面是个圆,有一个顶点,侧面是一个斜面,抽象画出圆锥的图形(边提问、边引导、边画图板书)。 顶点 圆心 高(2) 让学生在图中找出圆锥的顶点、画出圆锥的高。向学生明确:从圆锥的顶点到底面圆心的距离是圆锥的高。(在图上表示板书这条高)。(3)图里画的这条高和底面圆的所有直径有什么关系?(4)怎样测量圆锥高?(让学生根据上述方法使用三角尺、直尺测量自制圆锥的高。)第二步:回忆圆柱体积的计算公式画一个与上图圆锥等底、等高的圆柱,指名学生回答,并板书公式:圆柱的体积底面积高V圆柱= Sh第三步:课堂展示(1)我想知道堆起的沙堆的体积怎么办?(2)能不能也通过已学过的图形来求呢?转化成什么图形最合适?(3)你感觉它和前面学过的那个图形联系密切?(4)引导:可以通过实验的方法,得到计算圆锥(沙堆)体积的公式 。2、实验操作 这个环节分两个步骤进行。 第一步:实验操作法(1)第一次实验各小组拿出前一节课制作好的一个圆柱体A,与圆柱A等底、等高的圆锥体B;只与圆柱A等高、但不等底的圆锥体C;只与圆柱A等底、但不等高的圆锥体D,并做好标示进行区分。要求学科小组长为组员分配任务(操作员、记录员、监督员)。要求各小组依次用与圆柱:等底等高、等底不等高、等高不等底的三个圆锥分别装沙(沙子在圆锥口处要用尺子弄平),倒入圆柱中,观察每种情况下各要几次倒满圆柱,并把每次实验情况做好记录。提示思考“通过实验你发现了什么?当学生发现用圆锥B正好3次倒满圆柱,C和D都不定时,老师提问:圆柱A与圆锥B有什么关系呢?学生得出A、B等底、等高。再次提出问题:是不是所有的圆锥都是正好用三次就倒满与它等底等高的圆柱呢?从而进入第二层实验。(2)第二次实验各小组再拿两组等底、等高的圆柱与圆锥两对,用两个圆锥装满沙或米,然后分别倒入与它等底、等高的圆柱中,观察各要几次正好倒满。该实验操作,既能培养学生观察、比较、分析及语言表达能力,更能学会与人合作、与人交流思维的过程和结果。实验没有像教科书那样直接给出一组等底等高的圆柱和圆锥容器,是因为那样操作,学生只是按现有程序演示了一下书本上的结论而已,既无发现,更无创新,反而容易忽视等底等高这一前提条件。我设计的实验操作过程,注重科学性、全面性,学生操作自由度大,有利于学生创新力的发挥和创新能力的形成。3、推导公式(1)通过学生的实验结果,讨论:圆锥的体积与圆柱的体积有什么关系?让学生充分交流后达成共识:圆锥的体积是和它等底、等高的圆柱体积的三分之一。(2)圆锥的体积怎样计算?计算公式是什么?根据学生的回答板书:圆锥的体积等于和它等底等高的圆柱体积的1/3。 本步骤从感性认识上升到理性认识,进一步理解和巩固新知,培养学生严谨的逻辑思维能力,语言表达的条理性、准确性,突出教学重点。4、公式运用与延伸(1) 想一想,议一议,说一说知道底面积和高就可以求出体积,但在实际中,底面积测量不出来时,还会出现什么情况呢?、已知圆锥的底面半径和高,如何求体积?、已知圆锥的底面直径和高,如何求体积?、已知圆锥的底面周长和高,如何求体积?通过尝试练习,让学生熟练掌握公式。(2)展示提升一个圆柱的体积是27立方米,与它等底等高的圆锥体积是多少立方米?求下面圆锥的体积:a、底面直径是6分米,高是6分米;b、底面周长是62.8厘米,高是30厘米。以上三道题,要求学生板书解题过程,集体订正。(3)学习课本中的例3,让学生尝试自己讲,教师加以补充。5、新知识的实际运用打谷场上有一堆小麦堆成圆锥形状,测得麦堆的周长是6.28米,高是0.8米,每立方米小麦重735千克,请你估算一下这堆小麦有多重?这个问题在现实生活中实际存在,且经常会被大人们提到,学生通过本节的学习能解决这一问题,从而使学生们感到目前所学的知识非常适用,因此激发他们的学习兴趣。练习设计从基本题入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【专项押题预测】临考查漏补缺:基础知识综合-2025年中考语文(含解析)
- 湖北安全员c类考试试题及答案
- 中国广电山东网络有限公司2025年度市县公司招聘(145个)笔试参考题库附带答案详解
- 【芜湖】2025年安徽芜湖市南陵县事业单位引进高层次人才和紧缺人才8人笔试历年典型考题及考点剖析附带答案详解
- 历史七上期中考试试题及答案
- 【成都】2025年上半年四川成都市国资委所属事业单位招聘工作人员2人笔试历年典型考题及考点剖析附带答案详解
- 安徽消防国考试题及答案
- 场地环境调查与土地开发合同
- 中式餐厅全面承包经营协议
- 餐饮店线上线下融合承包合同范本
- 加入民盟的申请书完整版
- 商业秘密保护课件
- 电梯安装标准合同模板
- 《交流电气化铁道牵引供电系统》教学课件合集
- 松下NPM贴片机基本操作培训教程课件
- 中国哲学史考研笔记
- 掘进机整机出厂检验报告
- 《群落生态学》PPT课件(完整版)
- 旅行社的导游管理制度
- DB4201∕T 645-2021 房地产经纪服务规范
- 压铸件QC工程图
评论
0/150
提交评论