高中数学排列组合的应用3-ppt课件_第1页
高中数学排列组合的应用3-ppt课件_第2页
高中数学排列组合的应用3-ppt课件_第3页
高中数学排列组合的应用3-ppt课件_第4页
高中数学排列组合的应用3-ppt课件_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

,解排列组合问题的常用策略,高二数学张新伟,一、掌握优先处理元素(位置)法二、掌握捆绑法,学习目标:,知识点回顾:,1、什么叫做从n个不同元素中取出m个元素的一个排列?,从n个不同元素中取出m(mn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.,从n个不同的元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数.用符号表示,2、什么叫做从n个不同元素中取出m个元素的排列数?,3、排列数的两个公式是什么?,(n,mN*,mn),组合定义:一般地说,从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合。,组合数公式:,组合数的两个性质:(1)(2),一.特殊元素和特殊位置优先策略(优限法),例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.,解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置,先排末位共有_,然后排首位共有_,最后排其它位置共有_,位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。,(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?(特殊元素法),(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?,分析:可看作甲固定,其余全排列,例2:,(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?,解法一:(特殊位置法),第一步:从其余5位同学中找2人站排头和排尾,有种;,第二步:剩下的全排列,有种;,答:共有2400种不同的排列方法。,解法二:(特殊元素法),第一步:将甲乙安排在除排头和排尾的5个位置中的两个位置上,有种;,第二步:其余同学全排列,有种;,答:共有2400种不同的排列方法。,解法三:(排除法),先全排列有种,其中甲或乙站排头有种,甲或乙站排尾的有种,甲乙分别站在排头和排尾的有种.,答:共有2400种不同的排列方法。,【总结归纳】,一般地,对于有限制条件的排列问题,有以下两种方法:直接计算法排列的限制条件一般是:某些特殊位置和特殊元素.解决的办法是“特事特办”,对于这些特殊位置和元素,实行优先考虑,即特殊元素预置法、特殊位置预置法.间接计算法先抛开限制条件,计算出所有可能的排列数,再从中减去不合题意的排列数,特别要注意:不能遗漏,也不能重复.即排除法.,搞清限制条件的真正含义,做针对性文章!,例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。,若三个女孩要站在一起,有多少种不同的排法?,解:将三个女孩看作一人与四个男孩排队,有种排法,而三个女孩之间有种排法,所以不同的排法共有:(种)。,二.捆绑法,若三个女孩要站在一起,四个男孩也要站在一起,有多少种不同的排法?,说一说,相邻,例2:七个家庭一起外出旅游,若其中四家是一个男孩,三家是一个女孩,现将这七个小孩站成一排照相留念。,课堂练习:,1、4个学生和3个老师排成一排照相,老师不能排两端,且老师必须排在一起的不同排法种数是()A.B.C.D.,D,2、有5盆不同的花,其中2盆牡丹花,2盆月季花,1盆杜鹃花,要求牡丹花要摆放在一起且不能放到最后,那么有多少种摆法?,捆绑法:,对于相邻问题,常常先将要相邻的元素捆绑在一起,视作为一个元素,与其余元素全排列,再松绑后它们之间进行全排列.这种方法就是捆绑法.,课堂小结:,基本的解题方法:,有特殊元素或特殊位置的排列问题,通常是先排特殊元素或特殊位置,称为优先处理特殊元素(位置)法(优先法);,某些元素要求必须相邻时,可以先将这些元素看作一个元素,与其他元素排列后,再考虑相邻元素的内部排列,这种方法称为“捆绑法”;,(3)在处理排列问题时,一般可采用直接和间接两种思维形式,从而寻

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论