




已阅读5页,还剩23页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
9.3直线和平面平行与平面和平面平行,一.直线和平面平行,二.平面和平面平行,三.习题,一观察实例:1.教室中墙面与地面的相交线与地面的位置关系,3.天花板与墙面的相交线和地面的位置关系.,2.两墙面的相交线和地面的位置关系.,4.电线杆、加固电线杆的铁缆和地面的位置关系.,直线和平面平行,二.直线和平面的位置关系,直线与平面相交-一条直线和一个平面有且只有一个公共点.,表示为:,2.直线与平面平行-一条直线与一个平面没有公共点.,表示为:,直线在平面内一直线和平面有两个或两个以上的公共点.,表示为:,三.直线与平面平行的判定和性质定理,判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.,性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行.,四.例题,已知E、F分别是空间四边形四条边中AB、AD的中点,求证:EF/平面BCD.,求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.,直线和平面的位置关系,2.直线不在平面内,1.直线在平面内-有无数个公共点.,用公共点的个数归纳:,六.直线和平面平行的判定定理与性质定理的应用,(一)复习提问:1.直线与平面的位置关系有几种?各有什么特征?,2.如果一条直线与平面相交,可不可以说直线在平面外?,3.直线与平面平行的判定定理是什么?,4.直线与平面平行的性质定理是什么?,(二)例题1.选择题:,(1)直线m与平面平行的充分条件是(),A.直线m与平面内一条直线平行;,B.直线m与平面内无数条直线平行;,D.直线m与平面没有公共点;,C.直线m与平面内所有直线平行;,2.如图,正方体AC1中,点N在BD上,点M在B1C上且CM=DN,求证:MN/平面AA1B1B.,D1,A1,B,D,C,B1,C1,A,N,M,F,E,空间四边形ABCD被一平面所截,E、F、G、H分别在AC、CB、BD、DA上,截面EFGH是矩形.(1)求证:CD/平面EFGH;(2)求异面直线AB、CD所成的角.,A,E,D,C,B,G,F,H,如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面PAD平面PBC=L求证:(1)BC/L(2)MN/平面PAD,E,5.如图,ABCD与ABEF是两个全等正方形,AM=NF,求证:MN/平面BCE,P,M,已知ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和作平面交平面于,求证:AP/GH,O,(一)两个平面的位置关系:1.观察实例;,2.两个平面的位置关系:,(1)两个平面平行没有公共点;,二.平面和平面平行,(2)两个平面相交有一条公共直线;,3.两个平面平行的画法:,(2)不正确画法,4.两个平面相交的画法:,(二)两个平面平行的判定定理,1.由两个平面平行的定义可得:,如果两个平面平行,那么在其中一个平面内的所有直线一定都和另一个平面平行;,B.返过来,如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.,2.两个平面平行的判定定理,如果一个平面内的两条相交直线都平行于另一个平面,那么这两个平面平行.,3.推论:,如果一个平面内的两条相交直线分别平行于另一个平面内的两条直线,那么这两个平面平行.,(二)例题,1.求证:夹在两个平行平面间的平行线段相等.,2.如图:已知正方体求证:,1,1,1,1,(一)复习提问:1.空间两个平面的位置关系有那几种?,三.平面和平面平行的性质定理,2.如何判定两个平面平行?,4.设,平面与、都相交,交线的位置关系如何?,3.如果两个平面平行,那么在其中一个平面内的一条直线与另一个平面的位置关系如何?,定理:如何两个平行平面同时和第三个平面相交,那么它们的交线平行.,(二)平面和平面平行的性质定理,(二)例题:,选择题:(1)经过平面外两点可作该平面的平行平面的个数为()(A).0(B).1(C).0或1(D).1或2,其中可能出现的情形有(),(A).1种(B).2种(C).3种(D).4种,2.如图,设AB、CD为夹在两个平行平面、之间的线段,且直线AB、CD为异面直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 46197.2-2025塑料聚醚醚酮(PEEK)模塑和挤出材料第2部分:试样制备和性能测定
- GB/T 21739-2025家用电梯制造与安装安全规范
- 员工考勤管理模板
- 2025年短视频广告项目立项申请报告
- 2025安康市交通运输局定向招聘残疾工作人员(2人)考前自测高频考点模拟试题附答案详解(模拟题)
- 与时间赛跑的小英雄写人童话作文15篇
- 数据精准传递及处置合规承诺书(6篇)
- 小猫与气球之间的奇妙故事一则温馨的童话寓言9篇
- 2025辽宁兴城市人民医院、中医医院招聘急需紧缺人才37人考前自测高频考点模拟试题及答案详解(各地真题)
- 企业品牌推广计划及执行方案表
- 团员考试题目及答案大题
- 2025呼和浩特市总工会社会工作者、专职集体协商指导员招聘29人考试参考题库及答案解析
- 2024年山西晋城市市政公用集团有限责任公司招聘考试真题
- 扬尘治理专项施工方案(水利工程版)
- 2025上海市大数据中心招聘15人考试参考试题及答案解析
- 2025年秋招:人力资源专员笔试题库及答案
- 蓝豚医陪陪诊服务发展研究报告2025
- 第二单元 单元教学设计-统编版高中语文必修上册
- 脑干听觉诱发电位课件
- 企业诚信管理体系程序文件
- 山东大学工程流体力学(杜广生)课件第3章 流体动力学基础
评论
0/150
提交评论