【优秀课件】高中数学第一册上 第一章集合:§1.1.1集合.ppt_第1页
【优秀课件】高中数学第一册上 第一章集合:§1.1.1集合.ppt_第2页
【优秀课件】高中数学第一册上 第一章集合:§1.1.1集合.ppt_第3页
【优秀课件】高中数学第一册上 第一章集合:§1.1.1集合.ppt_第4页
【优秀课件】高中数学第一册上 第一章集合:§1.1.1集合.ppt_第5页
免费预览已结束,剩余10页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

集合,郑州一中何远顺,在生活,工作和学习中,我经常要研究考察一些由确定对象组成的集体.,例如:,(1)所有的等腰三角形;,(3)方程的所有解;,(2)所有的正数;,(4)不等式的所有解;,(5)在平面上,与一个定点距离等于定长的所有点;,象以上这些由确定对象组成的集体,称为一个集合.,一般地,某些指定对象集在一起就成为一个集合.简称集.它含有的各个对象,称为该集合的元素,我们可以从客观世界中找出一些例子:,(7)某校图书馆的所有图书;,(6)高一(3)班的所有男同学;,(8)某实验中心所拥有的电脑;,(9)某农场的收割机;,这些也分别由确定对象构成的集体,因此也是集合.,若某些对象可构成集合,则这些对象必须是确定的.,下列各组对象能否构成集合?,(1)30的所有质因数;,(3)所有素质好的人;,(4)高中数学的所有难题;,(1),(2)(3)(4),(2)接近的所有实数;,从例子中可以看到集合中的“对象”可以是数,点,图形,人,物等.“对象”属性不受任何限制,大到宇宙空间,小到某一“粒子”,世间万事万物,你可随心所欲把它们的“某些“甚至”一切”视为一个整体,即成集合.,同学们能举一些例子吗?,在实际生活中,某商店的商品种类可以构成一个集合,为什么?在书写这些商品种类时,同一种只写一次,顺序随意.,一般地,一个集合里的元素都是确定的,任何两个元素都是不同的,也就是说集合中的元素不允许重复出现,并且元素的排列与顺序无关.,2,元素的性质,(1)确定性,(2)互异性,(3)无序性,这些性质都是从概念中得到的,概念是知识的生长点,思维的发源地.,3.集合与元素的关系,给定的集合,它的元素必须是完全确定的,也就是说,给定的集合必须有明确的条件,由此条件可以判定任一对象或者是,或者不是这一集合的元素.,由于集合是一些确定对象的集体,因此可以看成整体,通常用大写字母A,B,C等表示集合.而用小写字母a,b,c等表示集合中的元素.,元素与集合的关系有两种:,如果a不是集A的元素:,如果a是集A的元素:,4.常用数集的表示,自然数集(非负整数集)N,正整数集(自然数集内排除0的集合)N*或N+,整数集Z,有理数集Q,实数集R,课堂练习P51,2,判断0与N,N*,Z的关系?,解析:判断一个元素是否在某个集合中,关键在于弄清这个集合由哪些元素组成的.,5.集合分类,按集中元素个数的多少可分为:有限集和无限集.,含有有限个元素的集合叫做有限集,含有无限个元素的集合叫做无限集,若按集中元素属性来分:数集,点集,高中数学主要研究数集和点集.,6.集合的表示方法,(1)列举法:把一个集合中的所有元素逐具列举出来,并用括起来.,小于5的正奇数组的集合:1,3,方程x2-1=0的所有解组成的集合:1,-1,设数学中四则运算符号组成的集合为M,那么,这个集合可表示为,18的所有正约数组成的集合为,那么10000的所有正约数组成的集合如何表示?,列举法有哪些优点?适用于表示哪些集合?应注意哪些问题?,例:,M=+,-,X.,1,2,3,6,9,18,列举法-具体(集合中元素具体化)-适用于表示元素个数较少的有限集,或元素间明显规律的有限集或无限集.,列举法表示集合应注意:,(1)元素与元素之间必须用”,”隔开.,(2)集合中元素不能重复,(3)不必考虑元素的先后顺序(若有删节号,需注意),即:元素不重不漏,不计次序地用”,”隔开并放在大括号内,例如:自然数集N=0,1,2,3,(2)描述法:用确定的条件表示某些对象是否属于这个集合.,符号描述法-用符号把元素所具有的属性描述出来,即:或,用描述法表示下列集合不等式2x-13的解集小于100的所有正奇数10000的所有正约数方程组的解集,例:,文字描述法-用文字把所具有的属性描述出来,如:所有等腰三角形构成的集合可表示为:等腰三角形,由于同一类对象,同一概念定义有不同的陈述,用文字描述法表示集合时形式往往不唯一.如:,等腰三角形=两条边相等的三角形=两个内角相等的三角形,描述法表示集合的关键:1确定代表元素,2找出元素所具有的公共属性,(3)图示法(韦恩图),用一条封闭的曲线围成的区域来表示一个集合,即画一条封闭的曲线,用它的内部来表示一个集合.,用图示法表示集合A=2的倍数和B=3的倍数之间的关系.,如30的质因数可表示为:,三种表示法对比,列举法-具体,描述法-简洁,抽象,图示法-形象直观,特别是表示集合间的关系时体现了数形结合思想,比较直观.,课堂练习P61,2,课堂小结:

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论