




已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考小题不等式练习1若ab0,则下列不等式不成立的是()AabbCln aln b D0.3a2,故选A.2若不等式mx22mx42x24x对任意x都成立,则实数m的取值范围是()A(2,2 B(2,2)C(,2)2,) D(,2答案A解析原不等式等价于(m2)x22(m2)x40,当m2时,对任意x不等式都成立;当m20时,4(m2)216(m2)0,2m0,b0)的最大值为8,则ab的最大值为()A1 B2C. D4答案C解析由约束条件作出可行域如图(含边界)联立解得B(,)化zaxby为yx,由图可知,当直线yx过点B时,直线在y轴上的截距最大,z最大此时zab8,即3a14b20.a0,b0,203a14b2,即ab.ab的最大值为,故选C.6已知变量x,y满足约束条件若,则实数a的取值范围为()A(0,1 B0,1)C0,1 D(0,1)答案C解析表示区域内点(x,y)与定点A(2,0)连线的斜率k,由图易观察到BC与y轴重合时,|k|kAC,当BC向右移动时,|k|kAC.综上,a0,17已知直线axby1经过点(1,2),则2a4b的最小值为()A. B2C4 D4答案B解析直线axby1经过点(1,2),所以a2b1,则2a4b2a22b222.故选B.8不等式x22x对任意a,b(0,)恒成立,则实数x的取值范围是()A(2,0)B(,2)(0,)C(4,2)D(,4)(2,)答案C解析a,b(0,),28,当且仅当a4b时,等号成立,由题意得x22x8,解得4x0),的最大值为6,则实数a的值为()A1 B2C3 D4答案D解析()22()3(1)22,设k,则k的几何意义是过区域内的点与原点的直线的斜率,作出不等式组对应的平面区域如图阴影部分所示(含边界):由得即A(1,1),则点A(1,1)在直线xy112,由得即B(1,a1)AC对应直线为yx,斜率k1,则k的最大值为ka1,则1ka1 (a2),则当a1时,取得最大值为6,即(a11)226,即(a2)24,解得a22或a22,即a4或a0(舍),故选D.13已知变量x,y满足则zlog4(2xy4)的最大值为_答案解析作的可行域如图阴影部分(含边界):易知可行域为一个三角形,验证知在点A(1,2)处,z12xy4取得最大值8,zlog4(2xy4)的最大值是,故答案为.14设a0,b0,若是3a与3b的等比中项,则的最小值是_答案4解析是3a与3b的等比中项,3a3b3ab3,ab1,ab(当且仅当ab时等号成立),4.15设关于x,y的不等式组表示的平面区域为D,已知点O(0,0),A(1,0),点M是D上的动点,|,则的最大值为_答案解析作可行域如图阴影部分(含边界):由题意知:B(,1),C(,2)所以,设M(x,y),由|得:x,所以,即的最大值为.16已知自变量x,y满足则当3S5时,z3x2y的最大值的变化范围为_答案7,8解析(1)当xyS与y2x4有交点时,最大值在两直线交点处取得,最小范围是当S
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隧道掘进过程中支护调整方案
- 司机安全教育知识培训课件
- 司机冷链知识培训照片课件
- 清远高三二模数学试卷
- 2025年小学计算机考试题及答案
- 南宁7年级新生数学试卷
- 知道智慧树气藏工程(双语)满分测试答案
- 2025年小学玄学考试题及答案
- 养鹅场饲养员培训与管理方案
- 小学生劳动精神培育的中华文化视角研究
- GB 15763.1-2001建筑用安全玻璃防火玻璃
- 走好群众路线-做好群众工作(黄相怀)课件
- 民间文学(全套课件)
- 专升本00465心理卫生与心理辅导历年试题题库(考试必备)
- 既有重载铁路无缝线路改造及运维技术探索
- 2022年教师副高职称评答辩范文(七篇)
- 高压罗茨风机选型参数表
- 金融控股公司协同模式与实务分析
- 架桥机日常检查记录表架桥机验收及试吊安全检查表
- 2021-2022年湖南省长沙市第一中学高一(上)入学考试物理试题(解析版)
- 轴类零件的设计ppt课件
评论
0/150
提交评论