直线与椭圆的位置关系的判断ppt课件_第1页
直线与椭圆的位置关系的判断ppt课件_第2页
直线与椭圆的位置关系的判断ppt课件_第3页
直线与椭圆的位置关系的判断ppt课件_第4页
直线与椭圆的位置关系的判断ppt课件_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

判断直线和椭圆之间的位置关系,数学组white,1,问题1:判断点和椭圆之间的位置关系:点在椭圆内部、上方和外部。椭圆的内接三角形在短轴上有一个顶点,它的重心是椭圆的一个焦点,因此椭圆的偏心率范围被找到。问题2:直线和椭圆之间位置关系的类型,2,1,0,注意交点的数量。问题2:判断直线与椭圆位置关系的方法:已知,1将直线方程代入椭圆方程,得到x(或y)的二次方程,2计算x(或y)的二次方程的判别式,如果 0,则3表示直线与椭圆相交,如果0,则表示直线与椭圆相切, 表明直线与椭圆分离,问题2:确定直线与椭圆之间的位置关系:由于椭圆是一条闭合曲线,直线与椭圆之间的位置关系问题直接转化为联立方程,联立方程由判别式或实数解确定。 方程的实数解用于求交点和切点的坐标。直线和椭圆之间有三种位置关系:相交、相切和分离。已知的直线椭圆。直线如何与椭圆(1)相交?(2)相切?(3)分离?当取任何值时,问题3:直线与椭圆相交得到的弦长公式:如果直线,弦长公式:6,因此,要得到直线与椭圆相交得到的弦长,只需将直线方程与椭圆方程结合起来,将其转化为关于,或的一元二次方程的形式,并通过vieta定理得到,并代入弦长公式进行计算。注意两点之间的距离公式必须写在弦长公式中。如果一条穿过焦点的直线和一个椭圆在两点相交,如果它穿过左焦点,那么如果它穿过右焦点,那么,如果它穿过右焦点,那么,一条已知斜率为2的直线穿过椭圆的右焦点,并在点a和b处与椭圆相交,以找到弦长AB。问题4:求解线性方程的方法:求解线性方程有两种方法:如果已知直线的轴上的截距为,或常数过定点,则方程设为,并应注意斜率存在与否的分类。(2)如果已知直线在轴上的截距是,或者直线通过,则方程被设置为,或者,当点是时,不需要讨论,分类,当,直线的斜率不存在时,直线的斜率是,问题5:椭圆面积公式:9,椭圆的两个焦点是F1和F2, 左焦点是直线和椭圆在点A和点B的交点,如果ABF2的面积为16,则得到直线方程。 如果直线穿过原点,而其他条件保持不变,找到直线的方程。问题6:解决中点和弦问题的两种方法:“点差法”:当涉及到由一条直线和一条圆锥曲线的交点所获得的和弦中点时,设置点来产生差异。体现“设而不求”的数学思想。(2)“维埃塔定理方法”:联立方程,将线性方程代入椭圆方程,并将其转换成一元二次方程的形式,该方程由维埃塔定理或除以2得到,从而得到中点横坐标或中点纵坐标。例5,点,是一个椭圆,其中有一个点,交点p作为弦,这样弦在点p处被一分为二,得到弦的方程。在研究直线与椭圆的交点时,必须注意两点:坡度分类的讨论;(2)当“直线与椭圆在两个不同的点a和b相交”时,满足这个隐式条件。(1)椭圆有一个外部点和一个内部点,p是椭圆上的任意点。如果需要最小值,B,C,D,(2),

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论