




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形有关线段复习资料一 知识点归纳知识点一 三角形的相关概念1. 三角形:三条线段 不在同一直线上 首尾顺次相接2. 三角形有三条边,三个顶点,三个角。在同一个三角形内,每一条边都有一个对角;每一个角都有一条对边知识点二 三角形的分类1. 三角形按边分类可分成 不等边三角形 和 等腰三角形(等边三角形是一种特殊的等腰三角形)2. 三角形按角分类可分成 锐角三角形 钝角三角形 和直角三角形知识点三 三角形的三边关系三角形任意两边之和 第三边,任意两边之差 第三边知识点四 三角形的主要线段:角平分线、中线、高线如图所示,在ABC中,AE是中线,AD是角平分线,AF是高线则(1)BE = = (2)BAD = = (3)AFB = = 90知识点五 三角形的稳定性三角形具有稳定性;四边形不具有稳定性二 重点剖析一 三角形的概念【例1】 右图中,三角形的个数为 个,ABE中AE的对角为 ,AD是ACD中 的对边;CE是 和 的公共边。【例2】 下列每个图形中各有多少个三角形。【练习】如图,(1)图中共有 个三角形;(2)B是ABC,ABE,DBC中的 、 、 边的对角;(3)AC分别是AOC、ADC、AEC、ABC中 、 、 的对边。二 三角形的三边关系【例1】现有两根木棒,它们的长度分别为20cm和30cm,若不改变木棒的长度,要钉成一个三角形木架,应在下列四根木棒中选取( ) A. 10cm的木棒 B. 20cm的木棒 C. 50cm的木棒 D. 60cm的木棒【例2】已知等腰三角形的两边长分别为3和6,则它的周长为 。【例3】已知三角形的两边a=3,b=7,则第三边的的取值范围是 。【练习】1. 已知等腰三角形的两边长为3和5,则它的周长为 。2. 五条线段的长分别是1、2、3、4、5(cm)以其中三条边为边长,可以构成 个三角形。3. 下列各组数分别表示三条线段的长度,( )组不能组成三角形。A. 1,2,2 B. 3x,5x,7x C. 三条线段的比为4:7:6 D. 4cm,8cm,13cm三 三角形的中线、角平分线、高线【例1】三角形的三条中线交于一点,这一点在三角形的 部;三角形的三条角平分线交于一点,这一点在三角形的 部;三角形的三条高线所在的直线交于一点,这一点在三角形的 部。【例2】如图,ABC中,AD为BC边上的中线,若AB=5cm,AC=3cm,则ABD的周长比ACD的周长多( ) A. 5cm B. 8cm C. 3cm D. 2cm【例3】如图,已知:AD、AE分别是ABC的高和中线,已知AD=5cm,EC=2cm。求:ABC的面积.【练习】1. 如图,D,E分别为ABC的边AB,BC的中点,则下列说法中不正确的是( )A. DE是BCD的中线 B. B的对角线是DEC. CD是ABC的中线 D. AD=DB,BE=EC2. 判断:(1)三角形的角平分线、中线、高线都是线段。( )(2)直角三角形只有一条高线。( )(3)钝角三角形有两条高在三角形的外部。( )(4)三角形的一个内角的角平分线叫做三角形的角平分线。( )四 三角形的稳定性【例1】如图是四根木条钉成的四边形,为了使它不变形,小明加了一根木条AE,小明的做法正确吗?为什么?若不正确应怎样做?【练习】下列图形,不具有稳定性的是( ) A B C D三 难点突破一 三角形的三边关系【例1】三角形的两条边长分别是2cm、6cm,第三边整数,则其可能的值有 个。【例2】如果三角形的两边分别为7和2,且它的周长为偶数,那么第三边的长为 【练习】1. 一个三角形的两边长为2cm和9cm,第三边长是一个奇数,则第三边的长为 2. 三角形的最长边为10,另两边的长分别为x和4,周长为c,求x和c的取值范围。二 三角形的中线与三角形的面积的关系(一)三角形的中线可以把原三角形分成两个小三角形,这两个小三角形的面积相等。(二)每个小三角形的面积都等于原三角形的一半。【例1】如图,在ABC中,AD是BC上的中线,BE是ABD中AD边上的中线,若ABC的面积是24,则ABE的面积是 【例2】如图所示,在ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且SABC=4cm,则S阴影等于( )A. 2cm B. 1cm C. cm D. cm【练习】1. 如图所示,AM是ABC的中线,若用S1表示ABM的面积,用S2表示ACM的面积,则S1与S2的大小关系是( )A. S1 S2 B. S1 S2C. S1 S2 D. 以上三种情况都有可能2. 如图,ABC中,AD为BC边上的中线,DF为ABD中AB边上的中线。已知AB=5cm,AC=3cm,ABC的面积为12cm,则(1)ABD与ACD的周长之差是 (2)ABD的面积是 (3)ADF的面积是 三 三角形有关线段的综合应用【例1】在ABC中,AB=AC,AD是中线,ABC的周长为34cm,ABD的周长为30cm,求AD的长。【例2】已知等腰三角形ABC中,AB=AC=10cm,D为AC边上一点,且BD=AD,BCD的周长为15cm,求底边BC的长。【例3】如图,在等腰ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,求这个三角形的腰长及底边长。【练习】1. 已知:ABC的周长为48cm,AB与BC之差为14cm,AC与BC之和为25cm,求AB,AC,BC的长。2. 如图,在ABC中,ADBC,BEAC,BC=12,AC=8,AD=6,求BE的长。四 巩固练习一、选择题1. 已知三条线段的比是:1:3:4;1:2:3;1:4:6;3:3:6;6:6:10;3:4:5。其中可构成三角形的有( ) A. 1个 B. 2个 C. 3个 D. 4个2. 在ABC中,D是BC上的点,且BD:DC=2:1,SACD=12,那么SABC等于( ) A. 30 B. 36 C. 72 D. 243. 若一个三角形的两条高于边重合,那么它的三个内角中( ) A. 都是锐角 B. 有一个直角 C. 有一个钝角 D. 不能确定4. 如图,在ABC中,D、E分别是AC、BC的中点,则下列说法正确的是( ) A. BD是ABC的平分线 B. BD是AC边上的高 C. BD是AC边上的中线 D. DE是ABC的中线5. 以长为3cm,5cm,7cm,10cm的四条线段中的三条线段为边,可以构成三角形的个数有( )。 A. 1个 B. 2个 C. 3个 D. 4个6. 如果三角形的一条边长为4cm,另两条边长都为x cm,则x的取值范围是( )。 A. x4 B. x2 C. x4 D. x2二、填空题1. 已知等腰三角形的两边长分别为4cm和7cm,且它的周长大于16cm,则第三边长为 。2. 若等腰三角形的腰长为6,则它的底边长a的取值范围是 。3. 若使一个五边形木框不变形,至少应再钉上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 资源整合:资源整合合同中确定价款的协同效应评估
- 农业园区租赁合同主体变更及农产品质量安全备忘录
- 跨国子公司增资扩股及国际市场拓展协议
- 分层分类教师培训
- 班组级别安全培训课件
- 杭州服装搭配培训
- 边防部队课件
- 人教版四年级语文下册第三单元《语文园地三》教学课件
- 面部清洁护理技术操作试题及答案
- 2025输血技术考试题目及答案
- 专题02 概率与统计解答题综合(解析版)
- 儿童考古小知识课件
- 桩基工程施工总体部署
- nfc菠萝果汁工艺流程
- 《智能电气设计》教案全套 陈慧敏 1-20 软件安装-配电柜门设备安装及布线
- 禁毒预防药物滥用
- 电能质量技术监督培训课件
- 正常血细胞形态学课件
- 股东大会制度法理研究
- 译林版八年级上册英语书后单词默写
- (部编版)小学道德与法治《学习伴我成长》完整版课件
评论
0/150
提交评论