




免费预览已结束,剩余42页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11.2.1三角形全等的判定(SSS),知识回顾,1.什么叫全等三角形?,能够重合的两个三角形叫全等三角形。,2.全等三角形有什么性质?全等三角形的对应边相等,对应角相等,知识回顾,即:三条边对应相等,三个角对应相等的两个三角形全等。,六个条件,可得到什么结论?,与满足上述六个条件中的一部分是否能保证与全等呢?,问题,一个条件可以吗?,两个条件可以吗?,一个条件可以吗?,有一条边相等的两个三角形,不一定全等,探究活动课本6,2.有一个角相等的两个三角形,不一定全等,结论:,有一个条件相等不能保证两个三角形全等.,有两个条件对应相等不能保证三角形全等.,不一定全等,有两个角对应相等的两个三角形,两个条件可以吗?,3.有一个角和一条边对应相等的两个三角形,2.有两条边对应相等的两个三角形,不一定全等,不一定全等,结论:,探究活动课本6,三个条件呢?,探究活动,三个角;,2.三条边;,3.两边一角;,4.两角一边。,如果给出三个条件画三角形,你能说出有哪几种可能的情况?,结论:三个内角对应相等的三角形不一定全等。,探究活动,有三个角对应相等的两个三角形,三个条件呢?,若已知一个三角形的三条边,你能画出这个三角形吗?,画一个三角形,使它的三边长分别为4cm,5cm,7cm.,三边对应相等的两个三角形会全等吗?,画法:,1.画线段AB=4cm;,2.分别以A、B为圆心,5cm、7cm长为半径作圆弧,交于点C;,3.连结AB、AC;,ABC就是所求的三角形.,动手试一试,探究活动,三边相等的两个三角形会全等吗?,画法:,动手试一试,探究活动,课本6,结论,三边对应相等的两个三角形全等,简写为“边边边”或“SSS”。,用上面的结论可以判定两个三角形全等判断两个三角形全等的推理过程,叫做证明三角形全等,三边对应相等的两个三角形全等.(简写成“边边边”或“SSS”),如何用符号语言来表达呢?,结论,课本7,A=_B=_C=_,B,ABCADC(SSS),例1已知:如图,AB=AD,BC=CD,求证:ABCADC,AC,AC(),AB=AD()BC=CD(),证明:在ABC和ADC中,=,已知,已知,公共边,判断两个三角形全等的推理过程,叫做证明三角形全等。,分析:要证明ABCADC,首先看这两个三角形的三条边是否对应相等。,结论:从这题的证明中可以看出,证明是由题设(已知)出发,经过一步步的推理,最后推出结论正确的过程。,归纳:,准备条件:证全等时要用的间接条件要先证好;,三角形全等书写三步骤:,写出在哪两个三角形中,摆出三个条件用大括号括起来,写出全等结论,证明的书写步骤:,例2如图,ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证:ABDACD.,A,B,C,D,应用迁移,巩固提高,(1),(2)BAD=CAD.,(2)由(1)得ABDACD,BAD=CAD.,已知AOB(如图),用直尺和圆规作AOB,使AOB=AOB。,练一练,课本P7-8,工人师傅常用角尺平分一个任意角.做法如下:如图,AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC便是AOB的平分线.为什么?,练习,课本P8,如图,AB=AC,AE=AD,BD=CE,求证:AEBADC。,证明:BD=CEBD-ED=CE-ED,即BE=CD。,练一练,思,考,?,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.求证:ABCFDE,分析:要证明ABCFDE,还应该有AB=DF这个条件,DB是AB与DF的公共部分,且AD=BFAD+DB=BF+DB即AB=DF,思,考,?,已知AC=FE,BC=DE,点A、D、B、F在一条直线上,AD=FB.求证:ABCFDE,练习1:如图,ABAC,BDCD,BHCH,图中有几组全等的三角形?它们全等的条件是什么?,解:有三组。在ABH和ACH中,AB=AC,BH=CH,AH=AH,ABHACH(SSS);,BD=CD,BH=CH,DH=DH,DBHDCH(SSS).,在ABH和ACH中,AB=AC,BD=CD,AD=AD,ABDACD(SSS);,在ABH和ACH中,(2)如图,D、F是线段BC上的两点,AB=CE,AF=DE,要使ABFECD,还需要条件.,BC,BC,DCB,BF=DC,或BD=FC,A,B,C,D,练习2,解:ABCDCB理由如下:AB=CDAC=BD=,ABD(),SSS,(1)如图,AB=CD,AC=BD,ABC和DCB是否全等?试说明理由。,A,E,BDFC,C,图1,已知:如图1,AC=FE,AD=FB,BC=DE求证:ABCFDE,证明:AD=FBAB=FD(等式性质)在ABC和FDE中,AC=FE(已知)BC=DE(已知)AB=FD(已证)ABCFDE(SSS),求证:C=E,,=,=,?,?,。,。,C=E(全等三角形的对应角相等),求证:ACEF;DEBC,已知:如图,AB=AC,DB=DC,请说明B=C成立的理由,A,B,C,D,在ABD和ACD中,,AB=AC(已知),DB=DC(已知),AD=AD(公共边),ABDACD(SSS),解:连接AD,B=C(全等三角形的对应角相等),已知:如图,四边形ABCD中,AD=CB,AB=CD求证:AC。,A,C,D,B,分析:要证两角或两线段相等,常先证这两角或两线段所在的两三角形全等,从而需构造全等三角形。,构造公共边是常添的辅助线,1,2,3,4,已知:AC=AD,BC=BD,求证:AB是DAC的平分线.,AC=AD(),BC=BD(),AB=AB(),ABCABD(),1=2,AB是DAC的平分线,(全等三角形的对应角相等),已知,已知,公共边,SSS,(角平分线定义),证明:在ABC和ABD中,练习3、如图,在四边形ABCD中,AB=CD,AD=CB,求证:A=C.,证明:在ABD和CDB中,AB=CD,AD=CB,BD=DB,ABDACD(SSS),(已知),(已知),(公共边),A=C(全等三角形的对应角相等),你能说明ABCD,ADBC吗?,解:,E、F分别是AB,CD的中点(),又AB=CD,AE=CF,在ADE与CBF中,AE=,=,ADECBF(),AE=ABCF=CD(),补充练习:,如图,已知AB=CD,AD=CB,E、F分别是AB,CD的中点,且DE=BF,说出下列判断成立的理由.,ADECBF,A=C,线段中点的定义,CF,AD,AB,CD,SSS,ADECBF,全等三角形对应角相等,已知,CB,A=C(),=,D,16,练一练,如图所示(1),AB=CD,AD=BC,O为AC的中点,过O点的直线分别与AD,BC相交于M,N,那么1和2有什么关系?请证明,将过O点的直线旋转至图(2)(3)的位置时,其他条件不变,那么图(1)中的1和2的关系还成立吗?请证明。,2,请同学们谈谈本节课的收获与体会,本节课你学到了什么?发现了什么?有什么收获?还存在什么没有解决的问题?,小结,2.三边对应相等的两个三角形全等(简写马“边边边”或“SSS”);,1.知道三角形三条边的长度怎样画三角形;,3.初步学会理解证明的思路,应用“边边边”证明两个三角形全等.,作业:课本P15习题11.2第1、2题,课堂小结,1.边边边公理:有三边对应相等的两个三角形全等简写成“边边边”(SSS),2.边边边公理的发现过程所用到的数学方法(包括画图、猜想、分析、归纳等.),3.边边边公理的应用中所用到的数学方法:证明线段(或角相等)证明线段(或角)所在的两个三角形全等.,转化,1.说明两个三角形全等所需的条件应按对应边的顺序书写.2.结论中所出现的边必须在所证明的两个三角形中.,用结论说明两个三角形全等需注意,小明做了一个如图所示的风筝,他想去验证BAC与DAC是否相等,但手头却只有一把足够长的尺子。你能帮助他想个方法吗?说明你这样做的理由。,思,考,?,探索与思考,小明有一块“飞镖”,想知道B和C是否相等,他没有量角器,只有刻度尺,你能帮小明想一个办法吗?说明你的做法的理由。,C,A,B,D,取出若干根的木
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 美术特色引流课件设计框架
- 2025年事业单位工勤技能-湖南-湖南土建施工人员四级(中级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北药剂员四级(中级工)历年参考题库典型考点含答案解析
- 2025年教育培训机构品牌建设策略研究报告
- 2025年事业单位工勤技能-海南-海南环境监测工四级(中级工)历年参考题库含答案解析
- 2025年事业单位工勤技能-河南-河南水文勘测工五级(初级工)历年参考题库典型考点含答案解析
- 2024版个人私有汽车出租合同书
- 2024版并购法律服务合同
- 2025年事业单位工勤技能-河北-河北保健按摩师一级(高级技师)历年参考题库含答案解析
- 2025年事业单位工勤技能-江西-江西中式面点师五级(初级工)历年参考题库含答案解析(5套)
- 部编小学语文四年级上册第8单元省级获奖大单元作业设计
- SMT-快速换线推进报告-.课件11
- 楼板下加钢梁加固施工方案
- 斜坡脚手架搭设施工方案
- 建筑行业人才培养与发展战略研讨会
- 成人高等教育学士学位英语核心单词+短语
- 16学时《中医药膳学》教学大纲(可编辑修改文本版)
- 《西方经济学》(下册)课程教案
- 费森CRRT设备操作流程-CVVH
- 智能渔业养殖系统开发合同
- LY/T 1828-2009黄连木栽培技术规程
评论
0/150
提交评论