




已阅读5页,还剩35页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章点的合成运动,8.1相对运动牵连运动绝对运动8.2点的速度合成定理8.3点的加速度合成定理,x,y,x,y,o,o,M,v,8.1相对运动牵连运动绝对运动,通过观察可以发现,物体对一参考体的运动可以由几个运动组合而成。例如,在上述的例子中,车轮上的点M是沿旋轮线运动,但是如果以车厢作为参考体,则点M对于车厢的运动是简单的圆周运动,车厢对于地面的运动是简单的平动。这样,轮缘上一点的运动就可以看成为两个简单运动的合成,即点M相对于车厢作圆周运动,同时车厢对地面作平动。于是,相对于某一参考体的运动可由相对于其它参考体的几个运动组合而成,称这种运动为合成运动。,习惯上把固定在地球上的坐标系称为定参考系,以oxy坐标系表示;固定在其它相对于地球运动的参考体上的坐标系称为动参考系,以oxy坐标系表示。,8.1相对运动牵连运动绝对运动,用点的合成运动理论分析点的运动时,必须选定两个参考系,区分三种运动:(1)动点相对于定参考系的运动,称为绝对运动;(2)动点相对于动参考系的运动,称为相对运动;(3)动参考系相对于定参考系的运动,称为牵连运动。,定参考系,动参考系,动点,一点、二系、三运动,8.1相对运动牵连运动绝对运动,(1)动点相对于定参考系的速度、加速度和轨迹,称为动点的绝对速度va、绝对加速度aa和绝对轨迹。(2)动点相对于动参考系的速度、加速度和轨迹,称为动点的相对速度vr、相对加速度ar和相对轨迹。,8.1相对运动牵连运动绝对运动,由于动参考系的运动是刚体的运动而不是一个点的运动,所以除非动参考系作平动,否则其上各点的运动都不完全相同。因为动参考系与动点直接相关的是动参考系上与动点相重合的那一点(牵连点),因此定义:,在动参考系上与动点相重合的那一点(牵连点)的速度和加速度称为动点的牵连速度(用ve表示)和牵连加速度(用ae表示)。,如果没有牵连运动,则动点的相对运动就是它的绝对运动;如果没有相对运动,则动点随同动参考系所作的运动就是它的绝对运动;动点的绝对运动既取决于动点的相对运动,也决定于动参考系的运动即牵连运动,它是两种运动的合成。,例如图杆长l,绕O轴以角速度转动,圆盘半径为r,绕轴以角速度转动。求圆盘边缘和点的牵连速度和加速度。,解:静系取在地面上,动系取在杆上,则,重点要弄清楚牵连点的概念,8.2点的速度合成定理,动系上与动点重合的点(牵连点)在定系中的矢径记为rM,在图示瞬时有,相对速度vr是动点相对于动参考系的速度,因此i、j、k是常矢量。这种导数称为相对导数。,动点的相对速度vr为,8.2点的速度合成定理,rM,rO,r,M(M),O,j,k,i,y,z,x,x,y,z,O,动点的牵连速度ve为,牵连速度是牵连点M点的速度,该点是动系上的点,因此它在动系上的坐标x、y、z是常量。,动点的绝对速度va为,即:动点在某一瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢量和。这就是点的速度合成定理。,8.2点的速度合成定理,处理具体问题时应注意:,(1)选取动点、动参考系和定参考系。,(2)应用速度合成定理时,可利用速度平行四边形中的几何关系解出未知数。也可以采用投影法:即等式左右两边同时对某一轴进行投影,投影的结果相等。,动点和动系应分别选择在两个不同的刚体上。,动点和动系的选择应使相对运动的轨迹简单直观。,8.2点的速度合成定理,在有的机构中,一个构件上总有一个点被另一个构件所约束。这时,以被约束的点作为动点,在约束动点的构件上建立动系,相对运动轨迹便是约束构件的轮廓线或者约束动点的轨道。,通常选动点和动系主要有以下几种情况:,1.有一个很明显的动点,在题中很容易发现;,2.有一个不变的接触点,可选该点为动点;,3.没有不变的接触点,此时应选相对轨迹容易确定的点为动点;,4.必须选某点为动点,而动系要取两次;,5.根据题意,必须取两次动点和动系;,6.两个不相关的动点,可根据题意来确定;,8.2点的速度合成定理,8.3点的加速度合成定理,即:动点在某一瞬时的绝对速度等于它在该瞬时的牵连速度与相对速度的矢量和。这就是点的速度合成定理。,?,8.3点的加速度合成定理,(1),(2),(1)带入(2),得到,又因为,所以,k,i,y,z,x,x,y,z,O,设动参考系以角速度we绕定轴转动,不失一般性,取定坐标系的z轴为其转轴。设k的端点A的矢径为rA,则A点的速度既等于rA对时间的一阶导数,又可用矢积来表示,即,A,rA,we,一、当牵连运动是定轴转动时,动系坐标的单位矢量的方向随时间不断变化,是时间t的函数。先分析对时间的导数,相对速度vr是动点相对于动参考系的速度,因此是常矢量。这种导数称为相对导数。,同理可得i、j的导数。,rM,rO,r,M(M),O,j,k,i,y,z,x,x,y,z,O,(3),二、推导点的加速度合成定理动点、动系、定系的选取如图所示,动点在动系中的坐标为x、y、z.,所以,因为,8.3点的加速度合成定理,rM,rO,r,M(M),O,j,k,i,y,z,x,x,y,z,O,牵连速度是牵连点M点的速度,该点是动系上的点,因此它在动系上的坐标x、y、z是常量。,8.3点的加速度合成定理,三、结论点的加速度合成定理:动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度、相对加速度与科氏加速度的矢量和。,令,称为科氏加速度,于是有,8.3点的加速度合成定理,q,科氏加速度等于动系角速度矢与点的相对速度矢的矢积的两倍。,aC大小为,其中q为we与vr两矢量间的最小夹角。矢aC小垂直于we和vr,指向按右手螺旋法则确定。,工程中常见的平面机构中we和vr是垂直的,此时aC=2wevr;且vr按we转向转90就是aC的方向。,8.3点的加速度合成定理,当牵连运动为平移时,we=0,因此aC=0,此时有,当牵连运动为平移时,动点在某瞬时的绝对加速度等于该瞬时它的牵连加速度与相对加速度的矢量和。,例1图示曲柄滑道机构,圆弧轨道的半径ROA10cm,已知曲柄绕轴O以匀速n120rpm转动,求当j30时滑道BCD的速度和加速度。,n,j,R,O,O1,A,B,C,D,j,解:取滑块A为动点,动系与滑道BCD固连。,求得曲柄OA转动的角速度为,O,O1,A,B,C,D,j,分析加速度得,将加速度向h轴上投影有:,例11刨床的急回机构如图所示。曲柄OA的角速度为w,通过滑块A带动摇杆O1B摆动。已知OA=r,OO1=l,求当OA水平时O1B的角速度w1。,解:在本题中应选取滑块A作为研究的动点,把动参考系固定在摇杆O1B上。点A的绝对运动是以点O为圆心的圆周运动,相对运动是沿O1B方向的直线运动,而牵连运动则是摇杆绕O1轴的摆动。,ve,va,vr,由于动参考系作转动,因此加速度合成定理为:,j,A,O1,O,B,w1,a1,h,为了求得aet,应将加速度合成定理向轴h投影:,即:,得:,摇杆O1B的角加速度:,A,B,O,C,w,例12偏心凸轮的偏心距OCe、半径为,以匀角速度w绕O轴转动,杆AB能在滑槽中上下平动,杆的端点A始终与凸轮接触,且OAB成一直线。求在OC与CA垂直时从动杆AB的速度和加速度。,q,解:选取杆AB的端点A作为动点,动参考系随凸轮一起绕O轴转动。,A,B,O,C,w,q,加速度分析如图,h,例13图示曲杆OBC绕O轴转动,使套在其上的小环M沿固定直杆OA滑动。已知OB10cm,OB与BC垂直,曲杆的角速度为0.5rad/s,求当=60时小环M的速度和加速度。,解:选取小环M作为研究的动点,动参考系随曲杆OBC一起绕O轴转动。点A的绝对运动是小环M沿OA杆的直线运动,相对运动是沿着BC的直线运动,牵连运动则是曲杆绕O轴的转动。于是:,由三角关系求得小环的绝对速度为:,小环M的加速度分析如图所示:,可得:,向y方向投影,有:,例14平底顶杆凸轮机构如图所示,顶杆AB可沿导轨上下移动,偏心圆盘绕轴O转动,轴O位于顶杆轴线上。工作时顶杆的平底始终接触凸轮表面。该凸轮半径为R,偏心距OC=e,凸轮绕轴O转动的角速度为w,角加速度为e。求OC与水平线成夹角j时顶杆的速度和加速度。,解1用运动方程求解。因推杆作平动,其上各点的速度和加速度都相同,现取推杆上与凸轮的接触点M分析:,解2取圆盘的中心C为研究的动点,动参考系与平底推杆AB固连,分析动点的速度和加速度如图所示。,可求得:,B,A,C,O,j,j,x,y,向y轴正向投影:,例15牛头刨床机构如图所示;已知。求图示位置滑枕CD的速度和加速度。,解:一、速度分析1)取套筒A为动点,动参考系与摇杆O2B固连。相对运动是套筒A沿摇杆O2B的直线运动,牵连运动是摇杆O2B绕O2的定轴转动,绝对运动是套筒A绕O1的圆周运动,绝对速度的大小是:,由速度合成定理可得:,2)取套筒B为动点,动参考系与滑枕CD固连。相对运动是套筒B沿滑杆的竖直直线运动,牵连运动是滑枕CD的水平平动,绝对运动是套筒B绕O
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新零售背景下实体书店顾客体验升级研究报告
- 2025至2030年中国减肥药行业市场深度分析及未来发展趋势预测报告
- 解析卷北师大版9年级数学上册期末试题附答案详解【轻巧夺冠】
- 解析卷山东省乐陵市中考数学真题分类(位置与坐标)汇编章节测试试题(含答案解析)
- 解析卷人教版8年级数学下册《平行四边形》定向攻克试题(含详细解析)
- 2025版水利工程地质勘察合同范本
- 2025办公空间租赁合同(含装修及维护条款)
- 2025年度润滑油产品回收与再利用合同
- 2025年度专业图形设计电脑租赁合同范本
- 2025年度餐饮企业员工职业培训合同范本
- 地理信息系统技术概述课件
- 从课本到奥数课件
- 脑梗死病人-护理查房课件
- 人类行为与社会环境全套课件
- 医院介入手术病人护送交接流程
- 学校家庭教育指导(班主任培训班) 课件
- 骨关节结核教案
- 楼板厚度检测报告
- 纳米材料ppt课件精品课件
- 精神发育迟滞课件
- 最新VTE指南解读(静脉血栓栓塞症的临床护理指南解读)
评论
0/150
提交评论