




文档简介
JCENTSOUTHUNIV20121927742781DOI101007/S1177101213416INTELLIGENTANTISWINGCONTROLFORBRIDGECRANECHENZHIMEI陈志梅1,MENGWENJUN孟文俊2,ZHANGJINGGANG张井岗11SCHOOLOFELECTRONICINFORMATIONENGINEERING,TAIYUANUNIVERSITYOFSCIENCEANDTECHNOLOGY,TAIYUAN030024,CHINA2SCHOOLOFMECHANICALENGINEERING,TAIYUANUNIVERSITYOFSCIENCEANDTECHNOLOGY,TAIYUAN030024,CHINACENTRALSOUTHUNIVERSITYPRESSANDSPRINGERVERLAGBERLINHEIDELBERG2012ABSTRACTANEWINTELLIGENTANTISWINGCONTROLSCHEME,WHICHCOMBINEDFUZZYNEURALNETWORKFNNANDSLIDINGMODECONTROLSMCWITHPARTICLESWARMOPTIMIZATIONPSO,WASPRESENTEDFORBRIDGECRANETHEOUTPUTSOFTHREEFUZZYNEURALNETWORKSWEREUSEDTOAPPROACHTHEUNCERTAINTIESOFTHEPOSITIONINGSUBSYSTEM,LIFTINGROPESUBSYSTEMANDANTISWINGSUBSYSTEMTHEN,THEPARAMETERSOFTHECONTROLLERWEREOPTIMIZEDWITHPSOTOENABLETHESYSTEMTOHAVEGOODDYNAMICPERFORMANCESDURINGTHEPROCESSOFHIGHSPEEDLOADHOISTINGANDDROPPING,THISMETHODCANNOTONLYREALIZETHEACCURATEPOSITIONOFTHETROLLEYANDELIMINATETHESWAYOFTHELOADINSPITEOFEXISTINGUNCERTAINTIES,ANDTHEMAXIMUMSWINGANGLEISONLY01RAD,BUTALSOCOMPLETELYELIMINATETHECHATTERINGOFCONVENTIONALSLIDINGMODECONTROLANDIMPROVETHEROBUSTNESSOFSYSTEMTHESIMULATIONRESULTSSHOWTHECORRECTNESSANDVALIDITYOFTHISMETHODKEYWORDSBRIDGECRANEANTISWINGCONTROLFUZZYNEURALNETWORKSLIDINGMODECONTROLPARTICLESWARMOPTIMIZATION1INTRODUCTIONBRIDGECRANESAREWIDELYUSEDININDUSTRYFORTRANSPORTINGHEAVYLOADSANDHAZARDOUSMATERIALSINSHIPPINGYARDS,CONSTRUCTIONSITES,STEELMILLS,NUCLEARPOWERANDWASTESTORAGEFACILITIESANDOTHERINDUSTRIALCOMPLEXESTHECRANESHOULDMOVETHELOADASFASTASPOSSIBLEWITHOUTANYEXCESSIVEMOVEMENTATTHEFINALPOSITIONHOWEVER,MOSTOFTHECOMMONBRIDGECRANERESULTSINASWINGMOTIONWHENTHEPAYLOADISSUDDENLYREMOVEDAFTERARAPIDMOTIONTHESWINGMOTIONCANBEREDUCEDFINALLY,BUTWILLBETIMECONSUMING,IE,REDUCINGTHEFACILITYAVAILABILITYASWELLASPRODUCTIVITYTHEFAILUREOFCONTROLLINGCRANEALSOMIGHTCAUSEACCIDENTANDMAYHARMPEOPLEANDSURROUNDINGFORTHISREASON,THEREHASBEENINCREASINGINTERESTINTHEDESIGNOFANANTISWINGCONTROLSCHEMEFORCRANESYSTEM111SLIDINGMODEVARIABLESTRUCTURECONTROLHASATTRACTEDINTENSIVERESEARCHDUETOITSROBUSTNESSTOSYSTEMPARAMETERUNCERTAINTIESANDEXTERNALDISTURBANCESONTHESLIDINGSURFACESOFAR,THETHEORYSYSTEMINTHEFIELDHASBEENBUILTPERFECTLYANDUSEDWIDELYFORPRACTICALSYSTEMS1215SOMERESEARCHERSUSEDTHEVARIABLESTRUCTURECONTROLWITHSLIDINGMODESTOCONTROLTHECRANESYSTEM1415AFUZZYANTISWINGCONTROLSCHEMEWASPROPOSEDFORATHREEDIMENSIONALOVERHEADCRANE1ANANTISWAYANDTRACKINGCONTROLBYUSINGTHEINPUT/OUTPUTLINEARIZATIONAPPROACHFORHARBORMOBILECRANESANDACONSTANTGAINPARTIALSTATEFEEDBACKCONTROLLERFORROTARYCRANESWEREPRESENTED23FORANOVERHEADCRANE,ANORMALPROPORTIONALANDDERIVATIVEPDREGULATORANDAFUZZYCEREBELLARMODELARTICULATIONCONTROLLERCMACWASDESIGNED,ANDTHISCONTROLCANREALIZEBOTHPOSITIONTRACKINGANDANTISWING11,BUTTHESYSTEMATICMODELWASSIMPLIFIEDASTHELINEARMODELINTHESEREFERENCESANADAPTIVESLIDINGMODEFUZZYCONTROLAPPROACHFORATWODIMENSIONALOVERHEADCRANEWASSTUDIED,ANDTHESYSTEMDISPLAYEDHIGHFREQUENCYCHATTERING14MOREOVER,MOSTRESEARCHERSHAVETREATEDTHECRANESYSTEMASASINGLEINPUTSYSTEM,WITHOUTCONSIDERINGTHECHANGESOFLIFTINGROPETHEPARTICLESWARMOPTIMIZATIONPSOALGORITHM,DEVELOPEDBYKENNEDYANDEBERHART,ISANEVOLUTIONARYALGORITHMWHICHISINSPIREDBYTHEMECHANISMOFBIOLOGICALSWARMSOCIALBEHAVIORSUCHASFISHSCHOOLINGANDBIRDFLOCKINGITDIFFERSFROMTHEOTHEREVOLUTIONARYTECHNIQUESINTHEADOPTIONOFVELOCITYOFINDIVIDUALS,ANDITCANSEARCHMORERANDOMLYTHANGENETICALGORITHMGAANDAVOIDFALLINGINTOTHELOCALOPTIMUMWITHFASTERCONVERGENCESPEED1617INORDERTOSOLVETHEABOVEPROBLEMS,AIMINGATTHEFOUNDATIONITEMPROJECT51075289SUPPORTEDBYTHENATIONALNATURALSCIENCEFOUNDATIONOFCHINAPROJECT20122014SUPPORTEDBYTHEDOCTORFOUNDATIONOFTAIYUANUNIVERSITYOFSCIENCEANDTECHNOLOGY,CHINARECEIVEDDATE20110906ACCEPTEDDATE20120417CORRESPONDINGAUTHORCHENZHIMEI,PROFESSOR,PHDTEL863516998245EMAILZHIMEICHEN400163COMJCENTSOUTHUNIV201219277427812775UNCERTAINTIESOFCRANEMODELPARAMETERS,ANEWPSOBASEDFUZZYNEURALNETWORKSLIDINGMODECONTROLFNNSMCMETHODWASPROPOSEDTHENEURALNETWORKWASADOPTEDTOAPPROXIMATETHEUNCERTAINTIESOFSYSTEM,ANDTHEPSOWASUSEDTOOPTIMIZETHEPARAMETERSOFSLIDINGMODECONTROLLER,SOTHECONVERGENCESPEEDOFPARAMETERSISFASTANDITCANQUICKLYREACHTHESLIDINGSURFACEANDIMPROVETHESYSTEMROBUSTNESSCONSIDERINGTHEFRICTIONOFSYSTEM,ITISNEEDLESSTOAPPROXIMATELYDECOUPLEORLINEARIZETHEMODEL,ANDTHECONTROLLERCANACCURATELYPOSITIONTHETROLLEYASWELLASSUPPRESSTHEPAYLOADSWINGEVENINTHEPRESENCEOFPARAMETERSUNCERTAINTIESANDEXTERNALDISTURBANCE2MODELOFBRIDGECRANETHEMODELOFTHEBRIDGECRANESYSTEMISSHOWNINFIG1THETROLLEYANDTHELOADCANBEREGARDEDASPOINTMASS,ANDTHEMOTIONOFLOADWASALWAYSONTHEXYPLANETHEFOLLOWINGDYNAMICEQUATIONOFACRANESYSTEMCANBEOBTAINEDBYUSINGLAGRANGEMETHODASBELOWFIG1SIMPLIFIEDMODELOFCRANE2SINSIN/COSSINSINSIN/SIN2/COSSINSIN/XXLLXXLLLLLXLXXFDXFDMLGLDFFDLMFDLMGLLFDXDLFLM1WHEREX,LANDARETHETROLLEYPOSITION,THELENGTHOFTHESUSPENSIONROPEANDTHESWINGANGLEOFLOAD,RESPECTIVELYMISTHETROLLEYMASSMISTHELOADMASSDXANDDLARETHEVISCOUSDAMPINGCOEFFICIENTSASSOCIATEDWITHTHEXTRAVELINGANDLHOISTINGDOWNMOTIONSRESPECTIVELYFXANDFLARETHEDRIVINGFORCESINTHEXANDLDIRECTIONS,RESPECTIVELYGDENOTESTHEGRAVITATIONALACCELERATIONSUPPOSETHATX1X,X2,XX3L,X4,LX5,X6THEN,THEEQ1CANBEEQUIVALENTTOTHEFOLLOWINGSTATEEQUATION12XX524523425245362255545654656233SIN1SINSINCOSSINSINSIN11SIN2COSLXXLXLXLXDDXXXXXFFMMMMXXDXXXGXXXMXXXDXFFMMMMMXXGXXXXXDXM555554333SINCOSCOSSINCOSLXLXXXXXDXFFMXMXMX23SLIDINGMODECONTROLDEFINETHETRACKINGERRORETAS1DD3DD5DEXXXXELLLLEE3WHEREXD,LDANDDARETHEREFERENCEINPUTTRAJECTORYOFTROLLEYPOSITION,ROPELENGTHANDSWINGANGLE,RESPECTIVELY,INGENERALLY,D0INADDITION,THEREFERENCEINPUTTRAJECTORYXD,LDCANSATISFYTHEASSUMPTIONTHATTHEFIRSTANDSECONDTIMEDERIVATIVESWEREASSUMEDTOBEUNIFORMLYBOUNDEDINTERNALLY,ANDTHATLDISNOTCLOSETOZEROTOAVOIDL0THROUGHOUTTHEENTIRECONTROLTHEN,THESYSTEMERRORMODELISASFOLLOWS1221112344221256633132DDEEEXFGUHUEEELFGUHUEEEFGUHU4WHEREU1FXU2FL1452SINLXDDFXXXMM11GM51SINXHM2252536254SIN1COSSINXLDXFGXXXXDXMMM25252SIN11SINXGXHMMM3F54655524333SIN2COSSINCOSXLGXXXDXXXXDXXXMMJCENTSOUTHUNIV2012192774278127765553333COSCOSSINXXXGHMXMXTHUS,THEBRIDGECRANESYSTEMWASDIVIDEDINTOTHREECOUPLEDSUBSYSTEMSTHEPOSITIONINGSUBSYSTEM,LIFTINGROPESUBSYSTEMANDANTISWINGSUBSYSTEMTHECONTROLOBJECTOFTHEBRIDGECRANEWASTOMOVETHETROLLEYTOITSDESTINATIONANDCOMPLEMENTANTISWINGOFTHELOADATTHESAMETIMEWHENTHESYSTEMMODELEXISTSUNCERTAINTYANDDISTURBANCEFOREXAMPLE,WINDSANDDIFFERENTPAYLOADSINORDERTODECOUPLETHESYSTEM,FOURSLIDINGMODEFUNCTIONSWEREDEFINEDFORTHETHREESUBSYSTEMSWITHSLIDINGSURFACE,SXCXE1E2,SCE5E6,SLCLE3E4,SSXSTAKETHEINDEXREACHINGLAWAS11SGNSSKS522SGNLLLSSKS6WHERECX,CL,C,1,K1,2ANDK2AREPOSITIVENUMBERSTHEN,ACCORDINGTOEQS46,THEFOLLOWINGEQUATIONSCANBEINTRODUCED1211322322XUHFHHFHFHCE314D222D621212SGNSGN/LLLHHCELSKSHXCEHHSKHS23123221GHGHGHGH742D222122SGNLLLCEFLSKSGUUH8HOWEVER,F1,H1,F2,G2,H2,F3,G3,ANDH3AREGENERALLYUNKNOWNINTHEACTUALSYSTEM,THEREFORE,THECONTROLLAWISDIFFICULTTOIMPLEMENT4FUZZYNEURALNETWORK41FUZZYNEURALNETWORKSTRUCTUREASTHEACTUALSYSTEMCONTROLLAWISDIFFICULTTOACHIEVE,THEOUTPUTOFTHREEFUZZYNEURALNETWORKSISUSEDTOAPPROXIMATEF1,H1,F2,G2,H2ANDF3,G3,H3TOREALIZEADAPTIVESLIDINGMODECONTROLFUZZYNEURALNETWORKFNNISDIVIDEDINTOFOURLEVELSINPUTLAYER,MEMBERSHIPLAYER,RULELAYERANDOUTPUTLAYERTHENETWORKSTRUCTUREISSHOWNINFIG2BECAUSEG1G11/MISCONSTANT,THEOUTPUTSOFTHEFIRSTFUZZYNEURALNETWORKARE1FAND1HINTHENETWORK,THEFUZZYSPACEOFEACHVARIABLEISDIVIDEDINTOFIVEFUZZYSETSNM,NS,Z,PS,PMANDTWENTYFIVERULESALTOGETHERASFOLLOWSRLIF11LXAAND12LXATHENLYWHERE12,XEXEARETHESYSTEMINPUTVARIABLES1LAAND2LAAREFUZZYSETSOFX1ANDX2,RESPECTIVELYYISTHESYSTEMATICOUTPUTVARIABLETHEFNNINFERENCEPROCESSISDESCRIBEDASFOLLOWSFIG2FUZZYNEURALNETWORKSTRUCTURE1INPUTLAYEREACHNODEINTHISLAYERISCONNECTEDWITHTHEINPUTVECTORTHEERRORANDITSCHANGERATEARETHENETWORKINPUTS,WHICHISCORRESPONDINGTOTHEJTHNODEINTHEINPUTOUTPUTANDCANBEEXPRESSEDAS1111111111IJJIJIIJJJJWIWXXOFII9WHERE1112,XETXET2MEMBERSHIPLAYERINTHISLAYER,INPUTVARIABLESAREDEFUZZIED,GAUSSIANMEMBERSHIPFUNCTIONISCHOSEN222222222221,EXPIJIJIJIJIJJIJIJJJJJWICIWCOFII10WHERECIJANDIJARERESPECTIVELYREPRESENTEDASTHEITHVARIABLESJTHNODEGAUSSIANFUNCTIONSCENTRALVALUEANDTHESTANDARDDEVIATION,BOTHOFTHEMAREADJUSTABLEPARAMETERS3RULELAYER,THATIS,THEMULTIPLICATIONOPERATIONONFUZZYRULES322333311333311,25IJJIJIIIIJJJJWIWXXJOFII11WHERE3IXISTHEITHINPUTVARIABLEOFTHETHIRDLAYER4OUTPUTLAYER,THATIS,OUTPUTVARIABLECLARITYJCENTSOUTHUNIV20121927742781277724414444JIIJIJJIVXOFII12WHEREVARE4,IJW4,IJV4,IJURESPECTIVELY,WHICHARETHECONNECTIONWEIGHTSBETWEENTHERULEOFTHEFIRSTJANDTHEOUTPUTNODE,ALLOFTHEMAREADJUSTABLEPARAMETERS42WEIGHTADJUSTMENTTHEWEIGHTCHOICEHADATREMENDOUSINFLUENCEONSYSTEMPERFORMANCES,IFTHEWEIGHTISINAPPROPRIATE,THECONVERGENCESPEEDOFNEURALNETWORKSWOULDBEREDUCEDTHISARTICLECARRIEDONTHETRAININGBASEDONTHEGRADIENTDESCENTLAWTOTHENETWORKWEIGHTDEFINEOBJECTIVEFUNCTIONASFOLLOWS44212JJJMDO13WHERE4JDISTHEDESIREDOUTPUTOFTHENETWORK,WHILE4JOISTHEACTUALOUTPUTOFTHENETWORKSUPPOSETHATTHELEARNINGRATEOFV,AIJANDBIJARE1,2AND3,RESPECTIVELY,THEADJUSTMENTVALUESARE1423JIJIJIJIJMVIMAAMBB14WHEREVARE4,IJW4IJVAND4,IJURESPECTIVELYSUPPOSE4,IJW4IJVAND4IJUAS1ASSEENFROMFIG2,THEREVERSETRANSMISSIONERROROFTHEOUTPUTLAYERISDESCRIBEDAS4444444JJJJJJJFIMMIFII44JJDO15AS31,IJWTHERULELAYERHADONLYTHEREVERSETRANSMISSIONERROR3333333JJJJJJJFIMMIFII44KJKKW16THEDEGREEOFMEMBERSHIPLAYERANTIPASSERRORIS2222222JJJJJJJFIMMIFII33KKKO17THEN,THEREVISEDTHREEPARAMETERSOFV,AIJANDBIJAREASFOLLOWS43JJMVOV181222IJJIJJIJIJOAMAAB1912232IJJIJJIJIJOAMBBB20ASTHECONTROLLAWSEQS78CONTAINSGNS,ITMAKESTHESYSTEMTOPRODUCEHIGHFREQUENCYCHATTERINGEASILYTHEREFORE,THESATURATIONFUNCTIONISUSEDINSTEADOFTHESIGNFUNCTIONTOSMOOTHCONTROLSIGNALTHEN,THECONTROLLAWCANBEREWRITTENAS1211322322XUHFHHFHFHCE314D222D621212SS/LLLHHCELATSKSHXCEHHATSKHS23123221GHGHGHGH2142D222122SLLLCEFLATSKSGUUH225PARTICLESWARMOPTIMIZATION51PRINCIPLEOFPARTICLESWARMOPTIMIZATIONASSEENINEQS2122,THECONTROLLERPARAMETERSCX,CL,C,1,K1,2ANDK2HAVEADIRECTIMPACTONTHESYSTEMCONTROLLAWTHEGREATERTHEVALUESOFCX,CL,C,1,K1,2ANDK2,THEFASTERTHESYSTEMAPPROACHEDTHESLIDINGSURFACEHOWEVER,TOOLARGEVALUESWOULDMAKETHECONTROLEXCESSIVEANDMAYCAUSETHESYSTEMCHATTERING,WHICHCANAFFECTTHEDYNAMICPERFORMANCESOFAPPROACHINGPROCESSOTHERWISE,THEVALUESARESMALLER,ALTHOUGHTHESYSTEMCHATTERINGISWEAKENED,THESPEEDTHATTHESYSTEMAPPROACHEDTOTHESLIDINGSURFACEWOULDALSOBECORRESPONDINGLYREDUCEDANDTHETIMETOREACHTHESLIDINGSURFACEWOULDBELONGERINORDERTOMEETTHERAPIDNATUREOFTHESYSTEMANDREDUCETHECHATTERING,THEPARTICLESWARMOPTIMIZATIONALGORITHMISADOPTEDTOOPTIMIZETHEVALUESOFCX,CL,C,1,K1,2ANDK2SIMILARTOOTHEREVOLUTIONARYALGORITHMS,PSOALGORITHMWORKSWELLWITHTHEFITNESSVALUEOFEACHPARTICLEBASEDONTHENOTATIONSOF“GROUP”AND“EVOLUTION”16INTHEORIGINALPSO,THEPOSITIONOFEACHPARTICLEINTHESWARMREPRESENTSAPOSSIBLESOLUTIONTHEPOSITIONANDVELOCITYOFPARTICLEIATITERATIONNAREDENOTEDASXI,DNANDVI,DN,RESPECTIVELYTHENEWVELOCITYATTHENEXTITERATION,VI,DN1,ISCALCULATEDBYUSINGITSCURRENTVELOCITYVI,DN,THEDISTANCEBETWEENTHEPARTICLESBESTPREVIOUSPOSITIONPI,DNANDXI,DN,ASWELLASTHEDISTANCEBETWEENTHEPOSITIONOFTHEBESTPARTICLEINTHESWARMPG,DNANDXI,DN,D,D11,D,D22,D,D1IIIGIVNVNRPNXNRPNXN,DMAX,DMAX,DMIN,DMIN1IF1IFIIVNVVVVNVVV23JCENTSOUTHUNIV201219277427812778WHEREISTHEINERTIAWEIGHT1AND2ARETHEACCELERATIONCONSTANTS,NAMELYCOGNITIVEANDSOCIALPARAMETERS,RESPECTIVELYANDR1ANDR2ARETWORANDOMVALUESINTHERANGEOF0,1THEABOVEDETERMINISTICANDPROBABILISTICPARAMETERSREFLECTTHEEFFECTSOFTHEINDIVIDUALMEMORYANDSWARMINFLUENCEONTHEPARTICLEPOSITIONSTHEPOSITIONOFPARTICLEI,XI,DNISITERATIVELYUPDATEDAS,D,D,D11IIIXNXNVN24THEOPTIMALSOLUTIONSCAN,THUS,BEACQUIREDBYCHOOSINGTHEBESTPARTICLESINADDIMENSIONALSPACE,WHEREDISTHENUMBEROFVARIABLESFROMEQS2324,ITCANBEOBSERVEDTHATTHECOLLECTIVEINTELLIGENCEWASTHEDISTINGUISHINGPROPERTYOFTHEPSOMETHODTHEOPTIMIZATIONPROGRESSFORPARAMETERSCX,CL,C,1,K1,2ANDK2INTHECONTROLLAWISINITIALIZEDWITHAGROUPOFRANDOMPARTICLESNTHROUGHOUTTHEPROCESS,EACHPARTICLEIMONITORSTHREEVALUESITSCURRENTPOSITIONXI,THEBESTPOSITIONINPREVIOUSCYCLESPIANDITSFLYINGVELOCITYVITHEOPERATORPLAYEDTHEROLEOFBALANCINGTHEGLOBALSEARCHANDTHELOCALSEARCHINORDERTOIMPROVETHECONVERGENCEPERFORMANCEOFPSOALGORITHMTOASSURETHEINITIALGLOBALSEARCHANDTHESUBSEQUENTLOCALRESEARCH,ATIMEVARYINGINERTIAWEIGHTNISFORMULATED,WHICHISTHEFUNCTIONOFITERATIONNMAX1205NNG25WHEREGMAXISTHEMAXIMUMCALCULATEDCUTOFFGENERATION52DESIGNSTEPSSTEP1INITIALIZEAGROUPOFRANDOMPARTICLESEGGROUPSIZEN,RANDOMPOSITION,VELOCITY,ANDINITIALVECTORSTEP2EVALUATETHEFITNESSVALUEOFEACHPARTICLEACCORDINGTOTHEOBJECTIONFUNCTIONJANDFITNESSFUNCTIONFASFOLLOWST1MIN2JEE26FIT1FJ27STEP3FOREACHPARTICLE,BYCOMPARINGTHEINDIVIDUALFITNESSVALUEATPRESENTANDTHEBESTPOSITIONPBESTITSELFINTHEPAST,THEBESTPOSITIONPBESTISUPDATEDIFTHEPRESENTVALUEISBETTERTHANTHEPASTSTEP4FOREACHPARTICLE,BYCOMPARINGTHEINDIVIDUALFITNESSVALUEANDTHEBESTPOSITIONGBESTOFTHEGROUPWITHTHOSEINTHEPAST,THEGLOBALBESTPOSITIONGBESTISUPDATEDIFTHEPRESENTVALUEISBETTERTHANTHEGLOBALOPTIMALPOSITIONSTEP5UPDATETHEVELOCITYANDPOSITIONOFPARTICLESACCORDINGTOEQS2324STEP6RETURNTOSTEP2IFTHETERMINATIONCONDITIONISNOTMETTHETERMINATIONCONDITIONISGENERALLYTHEPERFECTFITNESSORTHEMAXIMUMCALCULATEDCUTOFFGENERATION6SIMULATIONRESEARCHTOVERIFYTHEEFFECTIVENESSOFTHEPROPOSEDMETHODFNNSMC,ABRIDGECRANESYSTEM10ISINTRODUCEDINTOTHESIMULATION,M1KG,M025KG,DX015N/SM,DL01N/SM,G98M/S2THEDESIREDPOSITIONOFTROLLEYIS07M,LDISTYPEFUNCTION,ASSHOWNINFIG9,THELIFTINGROPELENGTHFROM07MTO04MTO07MTHEINITIALWEIGHTSOFTHREERBFNETWORKSARE0001,THECENTRALVALUESANDWIDTHSOFTWELVERBFNEURONSINHIDDENLAYERARETAKENASFOLLOWS110101010,10101010CT128282828,B295959595,95959595CT236363636,B310101010,10101010CT33333BACCORDINGTOTHEABOVEMETHOD,THESIMULATIONRESULTSARESHOWNINFIGS313FIGURES35DESCRIBETHEOUTPUTOFTHEFUZZYNEURALNETWORK,FIG6DESCRIBESTHEPROGRESSOFPARAMETEROPTIMIZATIONWITHTHEPSO,WHERECX26581,CL02188,C12658,38245,108360,207549,K123672,ANDK226224FIGURES79DESCRIBETHECHANGEOFSYSTEMVARIABLESUSINGFNNSMCANDSMC,THEMAXIMUMSWINGANGLEOFFNNSMCIS01RAD,THEMAXIMUMSWINGANGLEOFSMCIS012RAD,THERAPIDITYOFFNNSMCTHANSMCFIGURES1013DESCRIBETHECHANGECURVESWITH05STEPDISTURBANCEWITHINTHE13SITCANBESEENFROMFIGS1013,THEANTISWINGCAPABILITYOFTHISMETHODISSTRONGERTHANCONVENTIONALSLIDINGMODECONTROLANDTHEMETHODOFREF10INTHEPRESENCEOFDISTURBANCES,THEMAXIMUMSWINGANGLEOFITISONLY01RAD,BUTTHEMAXIMUMSWINGANGLE013RADOFSMCANDIS025RADINREF10ASCANBESEENFROMTHESIMULATIONRESULTS,THEPSOCANSEARCHTHEMOSTEXCELLENTVALUEFASTINTHESOLUTIONSPACETHETHREEGENERATIONSTHESIMULATIONSHOWSTHATTHEPROPOSEDCONTROLMETHODGUARANTEESANTISWINGCONTROLANDACCURATETRACKINGCONTROLOFTROLLEYWHENTHESYSTEMMODELEXISTSUNCERTAINTIESANDTHESLIDINGFUNCTIONCANREACHRAPIDLYTOTHESLIDINGMODESURFACE,WHICHIMPROVESTHESYSTEMROBUSTNESSJCENTSOUTHUNIV201219277427812779FIG3OUTPUTOFFIRSTFUZZYNEURALNETWORKA1FB1HFIG4OUTPUTOFSECONDFUZZYNEURALNETWORKA222CBHGFFIG5OUTPUTOFTHIRDFUZZYNEURALNETWORKA3FB3GC3HJCENTSOUTHUNIV201219277427812780FIG6OPTIMIZATIONPARAMETERSWITHPSOFIG7TROLLEYPOSITIONTRACKINGCURVEFIG8SWINGANGLETRACKINGCURVEFIG9ROPELENGTHTRACKINGCURVEFIG10TROLLEYPOSITIONCURVEWITHPOSITIONINGDISTURBANCEFIG11LOADANGLECURVEWITHPOSITIONINGDISTURBANCEFIG12TROLLEYPOSITIONCURVEWITHSWINGINGDISTURBANCEFIG13LOADANGLECURVEWITHSWINGINGDISTURBANCEJCENTSOUTHUNIV2012192774278127817CONCLUSIONS1ANEWINTELLIGENTANTISWINGCONTROLSCHEMEISPROPOSEDWITHCOMBINATIONOFSMCSROBUSTNESSANDFNNSINDEPENDENCEONSYSTEMMODELTHEBRIDGECRANEISSIMPLIFIEDINTOTHREEMULTIINPUTSUBSYSTEMS,FOURSLIDINGMODESURFACESAREDEFINEDANDFUZZYNEURALNETWORKSSLIDINGCONTROLLERISDESIGNEDITISCAPABLEOFTACKLINGNONLINEARSYSTEMWITHPARAMETERUNCERTAINTIES2COMPAREDWITHCONVENTIONALSLIDINGMODECONTROL,THESYSTEMACHIEVESGOODPOSITIONINGACCURACYANDSIGNIFICANTSWAYREDUCTIONWITHCONSIDERINGCHANGESOFLIFTINGROPEWHENTHEBRIDGECRANESYSTEMMODELHASUNCERTAINTIESANDDISTURBANCE3MOREOVER,BYTHEPSOALGORITHM,THEPARAMETERSOFCONTROLLERAREOPTIMIZEDTOACCELERATESYSTEMCONVERGENCE,THEINHERENTCHATTERINGPHENOMENAOFSLIDINGMODECONTROLCANBEELIMINATEDANDTHEPERFORMANCESOFCONTROLSYSTEMCANBEAMELIORATEDTHESIMULATIONRESULTSSHOWTHATTHECORRECTNESSANDVALIDITYOFTHISMETHODREFERENCES1CHOSK,LEEHHAFUZZYLOGICANTISWINGCONTROLLERFORTHREEDIMENSIONALOVERHEADCRANESJISATRANSACTIONS,2002,4122352432JORGN,ECKHARDA,KLAUSS,OLIVERSTRACKINGANDANTISWAYCONTROLFORBOOMCRANESJCONTROLENGINEERINGPRACTICE,2010,18131443CHANGCHENGYUAN,CHIANGKUOHUNGFUZZYPROJECTIONCONTROLLAWANDITSAPPLICATIONTOTHEOVERHEADCRANEJMECHATRONICS,2008IZUMOTOI,CHENTONGWEN,OHDAIRASADAPTIVEOUTPUTFEEDBACKCONTROLOFGENERALMIMOSYSTEMSUSINGMULTIRATESAMPLINGANDITSAPPLICATIONTOACARTCRANESYSTEMJAUTOMATICA,2007,4312207720855SORENSENKL,SINGHOSEW,DICKERSONSACONTROLLERENABLINGPRECISEPOSITIONINGANDSWAYREDUCTIONINBRIDGEANDGANTRYCRANESJCONTROLENGINEERINGPRACTICE,2007,1578258376YANGJUNGHUA,YANGKUANGSHINEADAPTIVECOUPLINGCONTROLFOROVERHEADCRANESYSTEMSJMECHATRONICS,2007,172/314315
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 跨境电子商务双语教程 习题和答案Chapter 1
- 提高病区住院患者入院健康教育知晓率质量改进项目
- 供水管网更新后的负荷测试方案
- 消防电梯设计与安装方案
- 建筑工程项目基础施工质量控制方案
- 基坑支护技术方案设计
- 鸡场农药使用与管理
- 水利项目土地利用方案
- 二零二五年度二手房购房定金合同样本(含违约责任细则)
- 二零二五年股权对赌协议转让合同:创业公司股权
- 2023年建筑工程施工现场安全管理资料全套样本方案模板
- 妊娠期合并症-心脏病的护理(妇产科学课件)
- 急救护理学高职PPT完整全套教学课件
- AutoCAD计算机辅助设计标准教程(中职)PPT完整全套教学课件
- 安全生产费用使用范围及计量办法
- 肾脏疾病常见症状和诊疗
- 安全环保职业卫生消防题库及答案
- 金X绅士无双攻略
- 第八章 立体几何初步(章末复习) 高一数学 课件(人教A版2019必修第二册)
- GB/T 27518-2011西尼罗病毒病检测方法
- GB/T 26255-2022燃气用聚乙烯(PE)管道系统的钢塑转换管件
评论
0/150
提交评论