已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11concentrationsofheavymetalareattheirlowestinthefirstcollectorchamberandhighestinthelastchamber.Theconcentrationofcadmiuminflyashusedasfertilisercanbereducedbyasmuchas70%byapplyingelectrostaticprecipitationfractionation.Theremovalofotherheavymetalsisnotasecientasthatofcadmium.Theresultsshowthatelectrostaticprecipitationisanadequatemethodintheasincreasingamountsofbiofuelsareused.Woodandpeatashcanbespreadontoforestlandsorarablelandasfertil-ablylower,beingabout6%in1997.materialsincreasetheash-containedCdconcentrations,andthenscreenoutthecadmiumcontainingmaterials.entsinash,onthesolubilityofnutrientsintheashandthesoil,andonsoilproperties,e.g.acidityandnutrientcon-centrations(Oravaetal.,2004;Silfverberg,1996).Table2showstheheavymetalconcentrationsoffourashtypes.Manysubstancescontainedinashareinextremelypoorlysolubleforms.Astheheavymetals(e.g.cadmium,*Correspondingauthor.E-mailaddresses:hanne.oravamikkeliamk.fi(O.Hanne),timo.nord-manoulu.fi(N.Timo),hannu.kuopanporttimikkeliamk.fi(K.Hannu).MineralsEngineering19(2006)iserorassoilimprovementmaterial,andwiththepurposeofaddingcalciumtothesoil.Theuseofashhasbeencon-strainedbyfactorssuchasitsdustcontentandheavymetalconcentrations;thelatterhavinginmanycasesexceededthemaximumpermittedlevelsimposedinFinlandonsoilimprovementsubstances(Table1).In2001,theutilisationrateofcoalash(84%)wascon-siderablyhigherthanthatofpeatandmixedfuelash(43%).Woodflyashutilisationrateshavebeenconsider-Smallamountsofflyashareusedasafertiliserbothinagricultureandinforestry.Generally,variousashtypesaremoresuitableasasoilimprovementmaterialthanfertilis-ersinagriculturebecausetheamountsofsolubleplantnutrientsinasharefairlylow.Peatashisusedmainlyasaphosphatefertiliserandwoodashinlimingofmineralsoilsandasabasicandsupportfertiliserinthegrowingofcerealcrops.Thelimingandfertilisereectsofashinthesoildependontheconcentrationsofcalciumandnutri-fractionatingofflyashtobeusedasafertiliserorsoilamendment.C2112006ElsevierLtd.Allrightsreserved.Keywords:Electrostaticseparation;Sizing;Classification;Fluedusts;Recycling1.IntroductionHeating-energyplantsandpowerplantsinFinlandgen-erateapprox.400,000tonnesofashofbiofueloriginperyear.TheamountsofsuchashwillincreaseinthefutureTheextractionofheavymetalsfromflyashcouldenableitsmoreecientutilisation.Currently,itappearsthatmanipulatingthepowerplantfuelqualityistheonlymethodavailableforthispurpose.Thismeansthatwemustknowthecombustiblefuelsexactconsistency,andwhichIncreasetheutilisationofflyashOravaHannea,*,NordmanTimoaYTIResearchCentre,MikkeliPolytechnic,bUniversityofOulu,P.O.Box4300,Received28April2006;AvailableonlineAbstractThebasicideainthisstudyistolookintothepossibilitiesofreducingtrostaticprecipitation.Theutilisationofflyashasfertiliserishamperedvariable.Flyashfractionationexperimentsweredoneusingelectrostatic0892-6875/$-seefrontmatterC2112006ElsevierLtd.Allrightsreserved.doi:10.1016/j.mineng.2006.07.002withelectrostaticprecipitationb,KuopanporttiHannuaP.O.Box181,FI-50101Mikkeli,FinlandFI-90014Oulunyliopisto,Finlandaccepted7July2006September2006theheavymetalconcentrationsofflyashbymeansofelec-byitshighconcentrationsofheavymetals,whicharehighlyprecipitatorsatfourpowerplants.Basedontheresults,theThisarticleisalsoavailableonlineat:/locate/mineng15961602lead,nickel)inashareinverypoorlysolubleforms,itcanTable2Heavymetalconcentrationsofvariousashtypes(Palola,1998)Heavymetals(mg/kg)CoalashPeatashWoodashBarkashArsenic(As)2.320022000.260728Cadmium(Cd)0.012500.0580.440420Chrome(Cr)3.6740015250152504081Copper(Cu)303000204001530057144Mercury(Hg)0.01800.00110.0210.0120.4Nickel(Ni)1.880015200202503652Lead(Pb)3.11800515015100053140Zinc(Zn)1413,000106001510,00011005100Table1MaximumpermittedconcentrationsofheavymetalsinsoilimprovementmaterialsandinflyashfrompowerplantA(Orava,2003)ElementPowerplantA:flyash(mg/kg)Maximumpermittedconcentration(mg/kg)Year2002Year2001Year1999Mercury(Hg)2.50.312.0Cadmium(Cd)2.695.056.33.0Arsenic(As)18.3419.733550Nickel(Ni)100Lead(Pb)56.59106.552.7150Copper(Cu)86.7290.1178600Zinc(Zn)189.7376.97061500O.Hanneetal./MineralsEngineerinbeassumedthatashfertilisationwillnotresultinsignifi-cantheavy-metalimpacts,e.g.inwatersystems,withinashortperiodoftimefollowingfertilisation.Inthelongrun,harmfulheavymetalsmay,however,bereleasedfromashinsolubleformsandbetherebytranslocatedintothevegetation(Nieminen,2003).Thelimingeectofashlow-ersthesolubilityofheavymetalsinthesoil.Ashmayatfirstraisethecadmiumconcentrationintreestands,butoncetreegrowthhasimprovedtheconcentrationsoftraceelementsandheavymetalsmayfallevenbelowtheinitiallevel.TheriseintheCdconcentrationinsomeplantspeciescanlastforalongtime(Moilanen,2003).Cadmiumiscon-sideredtobethemostharmfulofallheavymetalsbecauseitremainsinthesoil,itbecomesenrichedinfoodchains,anditistoxictoorganisms.Electrostaticprecipitation(Fig.1)iscurrentlythemostcommonmethodusedinseparatingthesolidmatterfrompowerplantfluegases.Theadvantagesofelectrostaticpre-cipitationincludehighcollectioneciency(ashighas99.9%)anditssuitabilityfordealingwithparticlesofdier-entsizes(evenparticlesizesbelow1lm)andvariablefluegasvolumes.Itsfurtheradvantagesarelongservicelife,goodoperationalreliability,andlowoperatingandmainte-nancecosts(Walsh,1997;Immonen,1987).Thefunctioningoftheelectrostaticprecipitatorissignif-icantlydependentonthepropertiesoftheflyashtobecol-lected.Theamountandsizedistributionoftheparticlestoberemovedhaveasignificantimpactonthefunctioningoftheelectrostaticprecipitator.Althoughthecollectione-ciencyofelectrostaticprecipitatorismoreorlessconstantirrespectiveoftheparticlemass,theeectivemigrationvelocityislowerinthecaseofsmallparticles.Duetothedierentchargingpropertiesoftheparticles,thecollectioneciencyoftheparticlesvariesasafunctionofparticlesize.Themostdicultparticlesizefromthepointofviewofseparationis0.20.5lm(Nykanen,1993;Kouvo,2003).Theconcentrationsofheavymetalinashcanbereducedbyfractionationofthefinestashparticlesfromfluegasesbymeansofmulti-chamberelectrostaticprecipitators.Thefractionatingpropertiesoftheprecipitatorcanbeinfluencedbyactionssuchasrestrictingandpulsatingthecurrent.OurresearchresultshaveshownthatheavymetalsFig.1.AlstomFinlandOyselectrostaticprecipitator(Jalovaaraetal.,2003).g19(2006)159616021597areconcentratedinfineashparticles(Oravaetal.,2004;Orava,2003).AccordingtotheresultsofThunandKorho-nen(1999),the3-fieldelectrostaticprecipitatorwasstopped,dependingontheoperatingconditions,8495%oftheoverallamountofashinthefirstfield,415%inthesecondfield,andapprox.1%inthelastfield.Thecad-miumconcentrationofashcanbereducedatleastby1525%bymeansoffractionatingtheashusingelectrostaticprecipitators(Oravaetal.,2004;ThunandKorhonen,1999).Dependingontheboilerinquestion,ashesfrombarkfuelledandwoodchipfuelledpowerplants(grateboilers)aredividedintoweightpercentagecategoriesasfollows:bottomash7090%,cycloneflyash1030%,electrostaticprecipitatorflyash28%anddustemissions0.13.0%(AgarwalandAgarwal,1999).Industcombustionandflu-idized-bedcombustion,theshareofflyashgenerationis80100%.Asmuchas7590%oftheheavymetals(CdandZn)arecontainedinthefineparticlefractionoftheflyash,whichisseparatedbyelectrostaticprecipitators(Dahletal.).Fig.2setsoutthezinc,leadandcadmiumcontents(mg/kgandm-%)inbottomash,cycloneashandelectrostaticprecipitatorflyash.Basedonthefigure,ashcanthusbereducedtobelowthemaximumpermittedconcentrations.2.MaterialsandmethodsThefractionatingtrialswithflyashwereperformedatfourpowerplants(A,B,CandD).Theelectrostaticpre-cipitatorswereoperatedatthepowerplantsatdierentvoltagelevelsandsamplesweretakenfromtheESPsvar-iousfields.Allthesamplestakenfromtheelectrostaticpre-cipitatorsweretakenfromtheashfeederslocatedundertheelectrostaticprecipitatorsbeforetheashwasfedintothesilo.ThesampleswereanalysedforthepresenceofPb,Cu,Zn,Ni,AsandCdusingthegraphitemethod1598O.Hanneetal./MineralsEngineering19(2006)15961602itmaybestated,forexample,thatelectrostaticprecipitatorflyashhasahigherCdcontentthancycloneash,whichispartlyduetothefactthat,comparedtocyclones,electro-staticprecipitatorsseparatesmallerparticlesthatcontainthemajorityofheavymetals.Inthiscase,theportionoftheflyashthatissuitableforuseasafertiliser,intermsofitsconsistency,remainsatthecyclone(ObernbergerandBiedermann,1997).Theelectrostaticprecipitatorcanmoreeectivelyfrac-tionateflyashthanthetraditionalmethodswhenamechanicalclassifier(cyclone)isconnectedbeforetheashreachestheprecipitator.Fig.3showsabasiclayoutdraw-ingofapowerplantfiredbyusingbiofuelsandwhichisprovidedwithamulti-cyclonebeforetheelectrostaticpre-cipitator.Asmuchas7590%oftheheavymetals(CdandZn)containedinflyashareboundtothefineflyashfractionseparatedbytheelectrostaticprecipitator(Dahletal.,2002).Properlydesignedandadjustedelectrostaticprecipita-Fig.2.Heavymetalconcentrationsandtheirdivisionasbulkpercentagefiguresinbottomash,cycloneflyashandfilterflyash(AgarwalandAgarwal).tionisinprinciple,capableofseparatingthatfractionofthefluegases,whichcontainsthegreatestamountofheavymetalsbutonlyafractionoftheoverallamountofash.TheheavymetalconcentrationsinthemainpartoftheFig.3.Theashfractionsproducedbyabiofuel-firedandparticlesizedeterminationwasdoneusingaMalverndevice.PowerplantAusespeat,forestchipandoilandtheby-productsofthemechanicalwoodprocessingindustryasitsfuels.Theboilercapacityavailabletothepowerplantis150MW.Thefractionatingtrialswereperformedwiththepowerplantscurrent3-fieldelectrostaticprecipitator.PowerplantBusestwoboilers,oneaPyroflowcirculat-ingfluidized-bedboiler(capacity55MW)andtheotherafluidized-bedboiler(capacity42MW).Thetrialswerecar-riedoutusingthefluidized-bedboiler.Thepowerplantsprincipalfuelismilledpeatwithwoodfuels,sootandalu-miniumoxidemixedinwithit.Theflyashfrombothboil-ersisconveyedvia2-fieldelectrostaticprecipitatorstoacommonashsilo.PowerplantCisequippedwithtwopowerplantboilers.Boiler1isafluidized-bedboilerwithafuelcapacityof267MW.Boiler2isaPyroflowcirculatingfluidized-bedboilerwithafuelcapacityof315MW.Thetestswereper-formedusingthePyroflowcirculatingfluidized-bedboiler.Thefuelsusedatthepowerplantweremainlymilledpeatandvariouswoodfuels.Bothboilersareequippedwith3-fieldelectrostaticprecipitatorsfromwhichtheboilersflyashisblownpneumaticallytoacommonashsilo.TheelectricalpowergeneratedbypowerplantDsfluid-ized-bedboilerplantis77MWanditsheatingcapacityis246MW.Thefuelsusedinthefluidized-bedboilerarepowerplant(AgarwalandAgarwal).mainlymilledpeatandwoodwaste.Theflyashissepa-ratedfromthefluegasesbymeansofa3-fieldelectrostaticprecipitator.3.ResultsDuringtrialswithpowerplantAselectrostaticprecipi-tator(trials17)thefuelusedwascomposed49%peatand51%woodfuels.Theashfunnelsoffields13oftheelec-trostaticprecipitatorweresampledandanalysed(Fig.4).Onthebasisoftheresults,theCdconcentrationwasatitslowestinfield1oftheelectrostaticprecipitatorandatitshighestinfield3.Thisisduetothebiggerflyashparticlesaccumulatinginfield1andfield3containingashwiththeparticlesinthefirstfieldoftheelectrostaticprecipitator.2.833.23.4024681012CBO-ratioCdmg/kgFig.5.TheeectoftheCBOratiofromelectrostaticprecipitatorfield1onflyashCdconcentrations(mg/kg)duringtrialrunswithpeatfuel.2.83.84253035404550VoltagekVCdmg/kgFig.6.Theeectofthefiltervoltagelevel(kV)fromelectrostaticO.Hanneetal./MineralsEngineering19(2006)159616021599smallestparticles.TheCdconcentrationinfield1varieswithintherangeof2.23.6mg/kgandinthelastfieldwithintherangeof7.212.4mg/kg.ConcentrationsareaectedbypropertiessuchastheESPvoltage,fuelquality,andfluegasflowrate.Inalmosteveryelectrostaticprecip-itatorsfield1theCdconcentrationisbelowthepermittedmaximumlimit(3.0mg/kg)setdownforashintendedforfertiliseruse.Duringtrialruns,theelectrostaticprecipitatorfieldsCBOratio(cycleblockinoperation)wascontrolledwithintherange012.Thevalue0meansthatallthehalf-cyclesofthefieldinquestionarecurrentlyactive,andforexam-ple,thevalue2meansthatonlyathirdofthehalf-cyclesareactive.TherebytheCBOvaluedeclareshowmanysequentialhalf-cyclesareclosed,thatis,howoftenthesep-aratorssupplycurrentispulsated.Inthepresentresearch,theCBOvaluewascontrolledbytheMicro-Kraftcontrol-lerwhosemaintaskistokeepthevoltageneartothebreakdownvoltage.Themostimportantthingistobeabletoinfluenceandchangethepropertiesoffield1intheelectrostaticprecipi-tator.Thefirstfieldenablestheproductionofflyashwithheavymetalconcentrationlevelsthatmakeitsuitableasafertiliser,forexample.Fig.5showshowtheelectrostaticprecipitatorsCBOratiocontrolforfield1aectstheflyashCdconcentrationlevels.Amongothert
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025重庆两江新区人和社区卫生服务中心招聘3人考试笔试备考试题及答案解析
- 2025甘肃酒泉博睿思双语高级中学教师招聘笔试考试参考题库及答案解析
- 2026年度中国储备粮管理集团有限公司河南分公司招聘126人笔试考试参考试题及答案解析
- 2025湖北随州北星汇能产业发展有限公司工作人员社会招聘考试笔试考试参考题库及答案解析
- 2025山西吕梁市柳林县公益性岗位人员招聘3人考试笔试参考题库附答案解析
- 2025首都医科大学附属北京朝阳医院派遣合同制岗位招聘12人(第六次)笔试考试备考题库及答案解析
- 2025浙江宁波象山县商贸集团有限公司第四期招聘工作人员2人考试笔试备考题库及答案解析
- 2025四川宜宾发展产城投资有限公司及其子公司第五批员工招聘6人笔试考试备考试题及答案解析
- 2025湖南师范大学附属贵安学校招聘学科竞赛教练笔试考试备考试题及答案解析
- 2025浙江省足球协会招聘人员2人笔试考试备考试题及答案解析
- 2025至2030中国团膳行业市场发展分析及发展趋势与投资机会报告
- 2025年新员工入职医疗器械知识培训试题及答案
- 光伏屋面施工资源配置方案
- GB/T 46729-2025纺织品智能纺织品术语和分类
- 桥架安装作业指导书方案
- 2025年武汉市黄陂区公开招聘工会协理员4人笔试考试参考题库及答案解析
- 2025亳州利辛县产业发展集团有限公司2025年公开招聘工作人员10人备考题库附答案
- 分式计算题强化训练(12大题型96道)解析版-八年级数学上册
- 【飞瓜数据】2025年休闲零食线上消费市场洞察
- 2025年吉林事业单位招聘考试职业能力倾向测验试卷(石油化工)
- 水泥厂应急预案模板
评论
0/150
提交评论