




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
翻译部分英文原文:KNOWLEDGEDISCOVERYFROMFINITEELEMENTSIMULATIONDATAJI-LONGYIN,DA-YONGLI,YING-CIftTNWANG,YING-HONGPENGInstituteofKnowledge-basedEngineering,SchoolofMechanical,ShanghaiJiaotongUniversity,Shanghai,200030,ChinaE-MAIL:yinjilongsjtu,,,Abstract:Knowledge-basedengineering(KBE)andfiniteelementanalysis(FEA)havebeenusedwidelyinsheetmetalformingarea.However,theacquisitionofknowledgekeepsbottleneckwhenbuildingknowledgebaseinKBE.Also,toproperlyunderstandtheresultsoftheFEAandconsequentlychoosetheappropriatedesign,alotofknowledgeandexperienceareneeded.FEAcangeneratemassivedata,inwhichlargeamountsofusefullyimplicitknowledgeishidden.Thus,knowledgeacquisitionfromthemisprospectivetoeasetheabovedifficultiesbyapplyingKnowledgeDiscoveryinDatabases(KDD)technology.Inthisstudy,thecharacteristicsoftheFEAdataarediscussedfirstly.ThenaframeworkofknowledgediscoveryfromFEAdataisproposed.Correspondingly,adata-miningalgorithmnamedfuzzy-roughalgorithmisdevelopedtodealwiththeFEAsimulationdata.Finally,thestampingprocessofasquare-cuppartwasstudiedasanexample.Theproposedknowledgediscoveryprocessisappliedtoobtainsomeuseful,implicitproductionruleswithefficiencymeasure.TheresultshowsthatknowledgediscoveryfromFEAsimulationdataisvaluable.Keywords:Knowledgediscovery;NumericalSimulation;Fuzzyset;Roughset;Ruleinduction1.IntroductionNowadays,KBEiswidelyusedinengineeringarea,whichintegratesartificialintelligencewithCAXsystemandconnectsengineeringdesignwithCAXsystemwithoutinterruption1.Greatly,aKnowledge-BasedEngineeringSystems(KBES)performancedependsonthescaleoftheknowledgebaseitpossesses.Knowledgeacquisitionremainsasthemaindifficultandcrucialproblem.Manualacquisitionneedshardworkofknowledgeengineersanddomainexperts,togetherwiththetightcorporationbetweenthem.Thequalityofacquiredknowledgeisusuallypoor.Therefore,thereisanurgentneedfornewknowledgeacquisitiontechniquesandtoolstoextractusefulknowledgefromtherapidlygrowingvolumesofdata.KDDisthenon-trivialprocessofidentifying2valid,novel,potentiallyuseful,andultimatelyunderstandablepatternsindata.Itcanacquireimplicitandusefulknowledgeinlarge-scaledatasetsandhasmadegreatsuccessincommercialareas.Ithasexpandedtoengineeringdisciplines.TheoverallKDDprocessincludesdataselection,datapreprocessing,datatransformation,datamining,interpretationandevaluation,asshowninFigure1.Recently,numericalsimulationhasbecomethethirdmodeofsciencecomplementingtheoryandexperimentinalmostalloftheengineeringareas.FEAisthemostcommoncomputersimulationmethodinsheetmetalforminganalysis3.FEAsimulationsgeneratevastquantitiesofdata.TohelpthedesignersunderstandtheoutputofFEA,visualizationtechniquesareoftenusedtodisplaytheresults.However,thescaleoftheresultdataissolargethatvisualizationisfarfromsufficientresultdescription.Designershavetointerpretanalysisresultstodeterminewhetheradesignschemeisacceptable.Thisisalaboriousanderror-proneprocess,andrequiresasignificantamountofexperienceandexpertise.Ontheotherhand,themassiveresultdataimpliesmuchusefulknowledge,buttheyaresimplystoredawayondisksandneveranalyzedeffectively.SoextractingtheimplicitengineeringknowledgefromFEAresultsisverymeaningfulandurgent.Inthisstudy,thecharacteristicsoftheFEAdataarestudiedfirstly.ThenaframeworkforknowledgediscoveryfromFEAsimulationdataisproposed.Accordingtothecharacteristicsofthedata,afuzzy-roughalgorithmisdeveloped.Finally,toverifythevalidityoftheframeworkandthealgorithm,thestampingprocessofasquarecupisanalyzedandtheconclusionisgiven.2.FrameworkofKnowledgeDiscoveryfromFEASimulationData2.1.CharacteristicsofFEASimulationDataThoughitisthesuccessofKDDincommercialareathatinterestsusinknowledgediscoveryfromFEAdata4,5,thereismuchdifferencebetweenthem.Firstly,simulationdataareusuallystoredinaflatfileorspecialformatdatabase,whilebusinessdataareoftenstoredincommercialdatabase6.TheaccessibilityandqueryofdataismoredifficultforFEAsimulationdatafilethanforcommercialdatabase.ToaccessthedatafromvariousCAXsystems,aspecialinterfacetoolkitmustbeused.Secondly,mostbusinessdatabasescontainstructureddataconsistingofwell-definedfields.Eachvalueofthatattributeprovidesforthetargetlabel.However,FEAdataareintheformofmeshdatawithoutlabels.Valuesatameshpointarerealandcanbeelement-centered,node-centeredoredge-centered7.Obviously,theyaresemi-structuredorunstructured.Domainknowledgemustbeusedtoidentifythepatternfeature.Thirdly,unlikeinbusinessorproduction,thegenerationoftheFEAdatadoesnotrelyonexternaleventsandcanbecontrolledcompletely.Thusthedesignofexperiments(DOE)canbeappliedByDOEtechniques,fewersimulationdataisneededtoacquiremoreknowledge.Comparisonbetweensimulationsalsocanbemadetounderstandthedependenceofoutputdataonthedesignparameterspace.Therefore,amodifiedframeworkforknowledgediscoveryfromFEAsimulationdatamustbedevelopedandanappropriatedata-miningalgorithmmustbedesignedtofitthecharacteristicsofFEAdata.2.2.TheProposedFrameworkAccordingtothecharacteristicsofFEAdata,amodifiedknowledgediscoveryframeworkisproposedasshowninFigure2.Thetotalframeworkiscomposedoffourparts:productdesignanddevelopment,data-collection,knowledgediscovery,knowledgemanagementandreuse.Productdesignandprocessdevelopmentisthesequenceofactivitiestoturnopportunitiesandideasintosuccessfulproducts.Eachdesignwillbeexaminedbysimulationmethodorexperimentbeforeobtainingasuccessfulproduct.Tostudytherelationbetweenthedesignparametersandproductsperformance,DOEtechnologycanbeused.Intheiterativeprocessofproductdevelopment,largeamountofFEAsimulationdatarelatedtodesignparametersaregenerated.Thesedataareusuallystoredintoflatfilesorspecialformatdatabasesdispersedlyandcanbeusedasthedatasourceforknowledgediscovery.Duetothediversityofthedata,therefore,thesecondpartoftheframework,adatacollectorisusedtocollectthesedataandtransformsthemintoaunifieddatabase.ItshouldintegratevarioustoolstoexchangedataamongdifferentCAX(CAD/CAEKAM)softwareandknowledgediscoverysystem.Thethirdpartisknowledgediscovery,aniterativeprocessincludingfivebasicsteps:domainunderstanding,dataselectionandintegration,datapre-processing,ruleinduction,knowledgeevaluationandinterpretation.Indomainunderstandingstage,everydatasetsconnotativemeaningandthemechanismbywhichtheyinteractshouldbeknownclearly.Theselecteddatawillbeusedandanalyzedtogiveananswertotheproblemunderconsideration.ToimprovethequalityofthedataforDMalgorithm,datapre-processingmustbedone.Inruleinduction,intelligentmethodsareappliedinordertoextractdatapatterns.Productionrulesareselectedastheknowledgerepresentationforminthisstudyduetotheirmodularity,simplicityandexpandability.Thedataminingprocessmayberefinedandsomeofitsstepsbeiteratedseveraltimesbeforetheextractedknowledgecanbeused.Thefourthpartoftheframeisknowledgemanagementandreuse.Theminedknowledgeiscleanedupfirsttoeliminatetheredundancyandconflictsbeforestoringintoknowledgebase.Themindedknowledgecanbeappliedinthreeways.Firstly,itcanhelpdesignersunderstandsimulationresultclearly.Secondly,itcanbeusedasheuristicknowledgeinsearchingoptimaldesign.Thirdly,itcanbeusedasaknowledgeauto-acquisitiontooltohelpknowledgeengineersinbuildingknowledgebase.Theframeworkitselfisalsoaniterativeprocess.Minedknowledgecanbereused,verifiedandrefreshedinthenextdesignloops.NewFEAsimulationdataaregeneratedandcanbeappendedintodatabaseasdatasourcefornextknowledgediscovery.Thus,theknowledgebasewillbecomemoreefficientandeasiertobeused.3.Fuzzy-roughsetsalgorithmTherough-settheory(RST)proposedbyPawlakhasbeenusedwidelyinknowledgereasoningandknowledgeacquisition9.SincethebasicRSTalgorithmcanonlyhandlenominalfeatureindecisiontable,mostpreviousstudieshavejustshownhowbinaryorcrisptrainingdatamaybehandled10.ToapplyingtheRSTalgorithmonrealvaluedataset,discretizationoftenhastobeappliedasthepreprocessingsteptotransformthemintonominalfeaturespace11.Inthisstudy,animprovedalgorithmnamedfuzzy-roughsetsalgorithmisdevelopedbyintegra
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 麻醉科呼吸心脏骤停应急预案考核试题(附答案)
- 2025年并购业务笔试题及答案
- 2024年口腔执业助理医师资格考试及答案
- 合同样本 消防安装人工费合同4篇
- 2025年第一季度口腔科三基考试试卷及答案
- 注销公司债权债务转让协议6篇
- 金融产品收益风险评估模型表
- 质量控制检查表缺陷识别及纠正措施版
- 书画素养比拼题库及答案
- 客户服务问题解决指南
- 酒店卫生应急预案
- 幼儿教育中彝族元素的使用
- 2025年度在线教育平台股东出资合同
- 慢性鼻窦炎鼻息肉护理查房
- 教学课件-电子商务法律法规(王庆春)
- 2024考研数二真题及答案
- 餐饮业合伙人入股协议书
- 《智能网联汽车智能传感器测试与装调》电子教案
- 2024年江苏省淮安市中考语文试题卷(含答案解析)
- 2第二章-微生物生态学研究方法
- 膝关节穿刺术课件
评论
0/150
提交评论