




已阅读5页,还剩72页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
摘要煤炭是目前以及未来一段时期内我们国家得主要能源。煤炭工业是我国经济建设的重要基础。掘进机是应用于隧道建设以及煤炭巷道机械化掘进的一种重要的机械设备,而悬臂工作机构直接参与截割工作机构,期截割性能对整体的工作效率、可靠性和使用寿命,以及截割的经济效益都有直接的影响,是整机的综合体现。在本次设计中的掘进机是一个能够实现连续截割,装载,运输的掘进机器。悬臂工作机构是掘进机的主要组成机构,按照悬臂工作机构的总体、动力部分、传动部分以及执行部分的设计思路进行掘进机悬臂的设计。在设计时,动力部分做选型计算,传动部分的截割减速机构做具体的计算与校核。我所设计的课题是掘进机悬臂工作的机构方案设计以及截割减速机构设计。对于提高和改进掘进机工作性能,发展我国大口径全断面掘进机产业以及进一步提高我国的盾构研发能力、改善研发条件具有重大战略意义。关键词截割减速器悬臂工作机构掘进机ABSTRACTCOALISTHEMAINENERGYSOURCEOFOURCOUNTRYINTHEPRESENTANDTHEFUTURECOALINDUSTRYISTHEIMPORTANTBASISOFECONOMICCONSTRUCTIONINCHINABORINGMACHINEISAPPLIEDINTUNNELCONSTRUCTIONANDMECHANIZEDDRIVAGEOFCOALROADWAYISAKINDOFIMPORTANTMECHANICALEQUIPMENTANDWORKINGMECHANISMOFCANTILEVERDIRECTLYINVOLVEDINCUTTINGWORKINGMECHANISM,BROKENPERIODCUTTINGPERFORMANCEONTHEOVERALLWORKEFFICIENCY,RELIABILITYANDSERVICELIFE,ANDTHECUTTINGOFTHEECONOMICBENEFITSHAVEDIRECTINFLUENCE,ISACOMPREHENSIVEREFLECTIONOFTHEWHOLEINTHISDESIGN,THETUNNELINGMACHINEISADRIVINGMACHINETHATCANACHIEVECONTINUOUSCUTTING,LOADING,TRANSPORTATIONCANTILEVERROADHEADERCONSISTINGMAINLYOFINSTITUTIONS,INACCORDANCEWITHTHECANTILEVEROVERALL,POWERPART,TRANSMISSIONPARTANDPARTOFTHEIMPLEMENTATIONOFTHEDESIGNIDEASOFCANTILEVERROADHEADERDESIGNINTHEDESIGN,THEPOWERPARTOFTHESELECTIONCALCULATION,THETRANSMISSIONPARTOFTHECUTTINGREDUCERTODOTHESPECIFICCALCULATIONANDVERIFICATIONTHESUBJECTIDESIGNEDISTHEMECHANISMDESIGNFORTHECANTILEVERWORKINGINTHETUNNELINGMACHINE,ANDTHEDESIGNOFTHECUTTINGMECHANISMTOENHANCEANDIMPROVETHEWORKINGPERFORMANCEOFTHEBORINGMACHINE,THEDEVELOPMENTOFCHINASLARGEDIAMETERFULLFACETUNNELBORINGMACHINEINDUSTRYANDFURTHERIMPROVEOURSHIELDABILITYOFRESEARCHANDDEVELOPMENT,IMPROVETHERDCONDITIONSISOFGREATSTRATEGICSIGNIFICANCEKEYWORDSCUTTINGREDUCERCANTILEVERWORKINGMECHANISMTUNNELINGMACHINE目录1掘进机的作用111国内掘进机技术与发展现状12悬臂的工作机构的设计221悬臂截割机构设计方案设计2211截割头形式的选择2212伸缩机构的确定3213截齿的类性322参数确定3223截割机构技术参数的初步确定53截割减速器设计931传动类型的设计932齿轮传动比的分配9321总传动比9322各级传动比1033高速级齿轮的设计计算11331配齿计算11332按齿面的接触强度做出初算传动中心距与模数13CA333计算传动的实际中心距变动系数和啮合角15CAACAC334计算传动的变位系数15335计算传动的实际中心距变动系数和啮合角16BCCBCB336计算传动的变位系数16337几何尺寸计算16338验算传动的齿面接触强度和齿根弯曲强度19CA339根据齿面接触强度确定内齿轮材料2434低速级齿轮的设计计算24341配齿计算24342按接触强度初算传动的中心距和模数25CA343计算传动的实际中心距变动系数和啮合角28ACAC344计算传动的变位系数29345计算传动的中心距变动系数和啮合角29BCCBCB346计算传动的变位系数29347几何尺寸计算30348验算传动的齿面接触强度和齿根弯曲强度32CA349根据齿面接触强度确定内齿轮材料3635输入输出轴的设计计算37351输入轴的设计计算37352输出轴的设计计算3936减速器轴承的校核42361齿轮用轴承的选择42362输入输出轴用轴承的选择4837减速器的润滑和密封49371减速器润滑49372密封方式494截割头轴的计算校核5041截割头轴的设计计算和校核5042截割头轴用轴承的选择和校核555结论57致谢58参考文献59附录A60附录B641掘进机的作用11国内掘进机技术与发展现状随着采煤技术的发展煤矿生产规模的扩大,大型矿井下大都开始采用全煤巷布置开采方式。采煤的工作面推进速度也比以前快的多,因而使煤矿井下的煤巷掘进工作量大幅增加所以掘进机工作效率也有了较高的要求。出于安全考虑巷道采用炮掘已经被严格要求。故掘进机是我国煤巷道掘进的重要设备。我国20世纪80年代初大批引进煤炭采掘设备,进过消化吸收和一些民营资本的进入,是我国的掘进设备有了长足发展与创新。12掘进机在煤矿领域中的作用掘进机主要由行走机构,工作机构,装运机构和转载机构组成。随着行走机构向前推进,工作机构中的切割头不断破碎岩石,并将碎岩运走。有安全、高效和成巷质量好等优点,但造价大,构造复杂,损耗也较大。掘进机的主要功能是剥落煤岩,能掘出不同的巷道断面尺寸。在给定所掘巷道的地质情况下,有较高的生产率。而且掘进机在井下不但用于巷道的掘进,在对一些特殊的煤和煤岩也起到采掘作用。并且在截割过程中动载荷小,生成的粉尘少,比能耗低,取代了人工钻眼放炮的原始掘进方法,掘进机自身携带装载、转载以及独立的行走机构,提高了井下工人们的工作环境、工作效率和井下安全系数。2悬臂的工作机构的设计21悬臂截割机构设计方案设计211截割头形式的选择方案一掘进机的截割机构采用横轴式截割头,横轴式的悬臂掘进机一般用于软岩掘进,横轴式的截割头的截割性能好,横轴式的截割头的头体多为厚钢板的组焊结构或者螺钉连接结构,由左右对称的两个半球体组成。截割头是通过涨套式的联轴器和减速器输出轴相连,可起到过载保护。横轴式截割头结构较为的复杂。截割头掏槽时横轴式的推进方式与截割力方向基本一致,必须用较大的进给力,如果用行走机构进给掏槽,则应加大行走功率,而且最大截割深度最大不能超过2/3的截割直径,这不便于挖柱窝。横轴式的截割头在掘进巷道时在工作面某一位置沿巷道掘进方向切进一定深度,然后截割头上下左右摆动扩大截割范围,实现对全工作面的截割,但要注意点是由于横轴式的截割头的结构所限,不容许完全做垂直摆动截割,否则两截割头中间部分将触媒,增大了工作的阻力。方案二掘进机的截割机构采用纵轴式截割头,纵轴式的悬臂掘进机采用二级的行星齿轮作为传动。它的特点是同轴传动,结构紧凑,传递功率大,传动效果好,在推进过程中方向几乎垂直截割方向,因而只需较小的进给力,而且截割深度可由几厘米到整个截割头长度任选。在巷道掘进中纵轴截割头可以朝任何方向摆动,因而可以选择岩层较弱、阻力最小的方向截割,同时还能掘出平整的巷道。纵轴式的截割头在掘进巷道时截割头首先要钻进工作面一定深度,然后横向摆动截割,达到巷道边界后,沿垂直方向截割一定高度,在水平摆动截割,如此循环往复,直到完成对全工作面的截割。使用纵轴式的悬臂机构进行设计。纵轴式悬臂掘进机由截割机构,装载机构,回转台,液压系统,行走机构,电气系统,后支撑和转载机构等组成。截割头是由截割机构上的电动机来驱动。行走,运输和转载的动力则是由安装在本体部的电动机和液压马达提供。截割臂的上下,左右摆动,铲板起落,后支撑支地和伸缩部伸缩都是由液压油缸来实现的6212伸缩机构的确定伸缩机构分为内伸缩式和外伸缩式。内伸缩式的结构具有尺寸小,结构紧凑,伸缩灵活。所以采用内伸缩式的伸缩机构。内伸缩式结构是由保护筒,伸缩内筒,伸缩外筒,花键套,密封座,主轴,轴承,隔套,旋转密封、油封等构成。位于截割头和减速器,通过花键联接使主轴旋转运动,带动截割头旋转,通过油缸伸缩带动伸缩部实现伸缩的机构。213截齿的类性选择截齿类型的时候,应综合考虑煤岩的坚固性、抗截强度、脆性程度、所含夹石层的软硬等因素。一般来说煤质坚硬、节理和层理都不明显、裂隙不发达的煤巷,可选用刀形齿。但因其径向安装,刀体部分承受弯矩较大容易断裂,所以刀体应有较高的强度。对于煤质硬而脆、且含有硬夹石的煤层,应选用镐形齿。这种截齿的强度大、耐磨,而且截割阻力的方向近于截齿的轴线方向,齿身所受弯矩小;齿的固定方法也比较简单。如果合理设计,可使截齿在截割过程中旋转,自磨刀,保持齿尖锐利,减少截割阻力,延长截齿寿命。所以这种截齿在掘进机截割头上使用较多。22参数确定221悬臂的长度和回转角度的确定根据上文的结构选择,伸缩机构类型采用内伸缩式。1伸缩量。伸缩量要大于或等于截深,考虑伸缩部的结构和机器工作的稳定性,悬臂伸缩量一般为500600MM,设计任务书中给出500MM,选取500MM。2悬臂长度和摆角通常情况下,巷道的形状和规格确定后,按照巷道和最大高度和上下宽度,结合巷道数据,基本可以确定悬臂的长度和摆角。最大掘高45M,上摆角,下摆角,取水平摆角。4513523最大掘宽55M下,悬臂长为21MAL3941503SIN/280即悬臂长为3941MM为垂直回转中心至水平回转中心的距离,取650MM。A1O2O回转中心高22H2583SIN54234I0即MM尽量降低重心,取H1600MM。0138H根据几何关系确定上摆角和下摆角。既上摆角,下摆角。32128222可掘断面参数的确定最大宽度当悬臂在水平位置摆动时24SIN201MAXLB,;5MAX4501MA653上部宽度当悬臂在上极限位置左右摆动时25SINCO2101LB,8432下部宽度当悬臂在下部位置左右摆动时26SINCO220ALB,M58上摆高度2101SINH74201下摆高度28SINLMH20卧底深度29SINI230LH,M250巷道高度2H5420110可掘最大断面2112MAX01MAX012MAX02362SBBH式中切割头前端至垂直回转中心的距离;01L1O垂直回转中心至水平回转中心的距离;A12水平回转时,悬臂的摆角;垂直回转的上摆角;1截割到巷道底面时,垂直回转的下摆角;2卧底时,悬臂垂直回转的最大下摆角,可根据卧底深度来定,一般可取3MM,这里取250MM。010H223截割机构技术参数的初步确定1截割头的有关参数的确定1截割速度与摆角速度在截割功率一定,切割的速度决定着截割力矩与截割力大小。截割力矩为3012NNMC平均截割力/DPCC平均单齿截割力MCZ1式中为切割头平均直径,M;0D为切割头的转速,R/MIN;N为切割力矩,;CMMN平均切割力,N;P平均单齿切力,N;C1同时工作齿数,可用总齿数一半。MZ悬臂式掘进机能达到的最大截割力总是与其截齿截割的速度相关。截割速度的选取一般取决于被截割岩石的特性,在15M/S中间选用。本设计要求,确定的截割的速度为20M/S。掘进机对煤岩性质具有一定的范围,通常在半煤岩中,可以选合理的工作摆动速度,在硬一点得半煤岩中取,在中硬煤岩石,摆动速度不可32BVM/IN0251M/IN以过大,取。51/I本设中,选取摆动速度为14。/IN2截割头的直径截割头的直径通常指其平均直径,它决定着掘进机的生产率和截齿的截割能力并与巷道断面大小有关。根据公式求得截割头横截面积(212)JVQSTE式中;HMQTT380理论截割生产率;。SVVJJ2掘进机截割速度;36701MSE根据公式得截割头平均直径(213)2EDS求得平均直径MD9213截割头的长度截割头的长度是指截割头沿轴线方向的长度,其值大小不仅影响掘进机工作的循环时间,而且还和煤岩的性质及其压张效应有关。因此,必须严格地选取。若截割头较长,虽对提高掘进机的生产率有利,但却使截割阻力和比能耗增加。如果截割头设计得太短,虽然可以利用自由面和地压作用,但由于钻进深度小将使掘进机推进速度降低。根据掘进机理论生产率(214)BTDLVQ06式中理论截割生产率;TQHMT38煤岩松散比;0510截割头平均直径;DD92截割头长度;L横切速度(悬臂的摆动速度);。BVMIN41VB68909256080BTDQL故截割头长度取M692截割头的转速确定掘进机的截割头转速根据公式为(215)60NVJ式中截割速度;JVSMVJ2截割头平均直径;。DD91N4919206MIRN故该掘进机截割头转速选取。MI4R3电动机的选择利用能耗法比能耗的实验数据估算截割功率N216LDVH60式中比能耗,;H3H/MKW4截割头摆动速度,;V/IN1HV截割深度,;L60L截割头平均直径,。D92DKW341290461N根据行业标准MT4771996YBU系列掘进机用隔爆型三相异步的电动机,确定截割功率为160KW,额定电压AC1140/660V,转速1483RPM,选用YBUD160/1004/8型掘进机专用防爆水冷型三相异步电动机。数据如表21所示。表21电动机技术数据TABLE21MOTORTECHNICALDATA型号功率KW额定电压V转速RPM效率功率因数额定转矩冷却方式工作制绝缘等级重量KGYBUD160/100160/100660/11401483/733RPM0925/090088/06920外壳水冷S2H26903截割减速器设计31传动类型的设计行星齿轮的传动具有多分流传动,低压力啮合,作用力平衡与运行多变性等诸多特点,所以同等工作条件下和定轴齿轮传动相比,行星齿轮传动具有外形尺寸小,重量轻,传动效率高,工作可靠和同轴传动等一些优点,国内外纵轴式掘进机的截割结构传动系统都采用行星齿轮传动,以提高承载能力、效率和可靠性的同时,也尽可能地减轻重量,缩小外廓尺寸,降低制造成本。不但要传动装置体积小,结构紧凑,而且满足一定的强度要求和减速比要求。故这种工作机构的传动装置多采用行星齿轮传动,来满足要求。若采用一级减速,则传动比太大,导致齿轮结构很难满足现实要求,所以,决定采用二级齿轮减速。齿轮系的选取有定轴轮系与周转轮系两种。由于悬臂使用内伸缩式,电动机,联轴器,的减速器相对于轴向是固定的,传动装置体积小,结构紧凑等考虑,采用双级行星齿轮传动。工作机构传动系统布置图31。图31传动系统FIGURE31TRANSMISSIONSYSTEM32齿轮传动比的分配确定总传动比并根据传动比分配理论分配各级传动比,并选择齿轮齿数。321总传动比312436182NI322各级传动比和分别为高速级传动比和总传动比。I用角标表示高速级参数,表示低速级参数。设高速级与低速级外啮合齿轮材料、齿面硬度相同,则LIMLIH(32)1BD式中低速级内齿轮的分度圆直径;BID高速级内齿轮的分度圆直径。I(33)2WNHVCDSZKCA式中中间变量;A行星轮数目,;SC3S5S分度圆的齿宽系数,;D21D齿面工作硬化系数,;WZWZ载荷分布系数,;CCKKCK接触强度的载荷系数,。H2NHVZ4135A8BE345678102EIII图32传动比分配图FIGURE32RATIODISTRIBUTIONDIAGRAM由图32可得56I(34)964523I33高速级齿轮的设计计算331配齿计算选择确定行星轮数目取,因为距达到的传动比较远,所以可以不计算3SC56BAXI邻接的条件。确定告诉轴中个齿轮齿数,行星减速器齿轮传动的配齿公式来计算。(35)NCZISABX(36)ASB(37)21CZ式中行星的减速器高速级减速比,;BAXI56BAXI行星的减速器高速级的中心轮齿数;AZ整数,;N19行星的减速器高速级的内齿轮齿数;B行星的减速器高速级的行星轮齿数。CZ19356AZ4891BZ52C表31行星轮数目与传动比的关系TABLE31THEPLANETSROUNDNUMBERTOTHETRANSMISSIONRATIO传动比范围行星轮数目SCBAXI3211374216552147采用了不等角变位。可取或19CZ20C若取,则,由文献16可查出适用预计的啮合角在20CZ948ABJ、到、的范围内;若取,则A3B3021C2CB9CZ,适用预计的啮合角在、到、1948CABZJ30AC4017B3026AC的范围内。2B取时,不符合不等角变位的选择条件、且各齿轮齿数间存在公因数。应取0C且符合公因数条件,预取。19CZ3026AC332按齿面的接触强度做出初算传动中心距与模数电动机输入转矩ITNP95038式中电动机的功率,;PKW160电动机的转速,;NRPM483NMN10395T在传动中,对中心轮的传递转矩CAA(39)CSKCT式中电动机输入的转矩,;TMN103行星轮个数,;SCSC载荷的不均匀系数,由文献16查得。CK15CKMN390AT齿数的比129ACZU中心轮与行星轮材料使用渗碳淬火处理,中心轮与行星轮齿面硬度均为RMO20,则试验齿轮接触疲劳的极限为。HRC6352LIMN/150H齿轮中心轮的许用的接触应力(310)LILIMHXWRVNHPSZ式中计算接触强度寿命系数,根据文献17查得;NZ1NZ速度系数,根据文献查得;V90VZ粗糙度系数,根据文献查得;R1R工作硬化系数,根据文献查得;WZW接触强度计算尺寸系数,根据文献17查得;X1XZ计算接触强度为最小安全系数根据文献查得。LIMHSLIMHS2N1350950HP中齿面的强度计算公式可以计算出中心距310321HPAAAUKT式中钢与钢配对齿轮副常系数;AA483A齿数比;U12U载荷系数由文献16查得;K1K齿宽系数,;A70A许用的接触应力。HP2MN135HPM9613507084832A齿轮模数(311)86192CAZAM圆整之后取模数。8传动的未变位时的中心距CAM129282CAACZMA按之前取啮合角,可得出传动中心距的变动系数3061COS21ACACZ式中标准压力角,。07041326COS0192AC则传动的实际的中心距CAM63178041MAAC圆整后取实际中心距。18333计算传动的实际中心距变动系数和啮合角CAACAC传动的实际中心距变动系数AC(312)MA式中圆整后的实际的中心距,;A18传动未变位时的中心距,。AC2ACA7508传动的啮合角AC8902COS1CSCOSAAC5326334计算传动的变位系数CA313TAN2IVIZXACAC式中啮合角的渐开线函数,;ACINV037958ACINV标准压力角的渐开线函数,。10729409ACX利用文献校核,在许用区内。A分配变位系数,得510X36508AC335计算传动的实际中心距变动系数和啮合角BCBCB传动的未变位时的中心距C(313)M1694822CBCZMA50192376COS86CSCOSACB0231336计算传动的变位系数314TAN2IVIZXCBBC式中啮合角得渐开线函数,。CBINV017CBIV2652948148CBX30650337几何尺寸计算几何尺寸计算公式由表32,计算各个齿轮分度圆直径M7298AZD34BM15298CZD式中分别是中心轮、内齿轮和行星轮的分度圆的直径。CBAD计算各个齿轮齿顶高齿顶高变位系数1307536051ACACX2BB计算传动时中心轮和行星轮齿顶高A(315)MXHACAA式中齿顶高系数,;AH1AH齿轮模数,。MM8M0813051AA96XHCAC计算出传动时的行星轮和内齿轮齿顶高B8105301MXCBACM9646HB由于在行星传动中,行星轮主要与中心轮啮合,而与内齿轮的啮合精度不要求太高,所以选。M810ACH计算各个齿轮的齿根高316MXCHAAFA式中齿根系数标准值,;C250C齿轮模数,。MM8M851025FAH04163MXCBAFB875021HCFC表32齿轮传动几何尺寸计算TABLE32GEARGEOMETRYSIZECALCULATION计算公式及说明项目代号直齿轮(外啮合、内啮合)分度圆直径D21MZD齿顶高变动系数YYXY1齿顶高AHHA221齿根高FMXCAFF2211齿高H2211FAH外啮合2211AAD齿顶圆直径内啮合AD2211AAH齿根圆直径F2211FFD各个齿轮的齿顶圆直径M16940827AAAAHDM08374962384ABABHD115CC各个齿轮的齿根圆直径2460872FAFAHDM935134FBFB847025FCFCHD计算齿轮的齿宽中心轮齿宽M45072ADB圆整后取中心轮齿宽,M50A行星轮齿宽,4CB内齿轮齿宽。16B338验算传动的齿面接触强度和齿根弯曲强度A(1)中心轮齿面接触强度校核中心轮输入转矩317NPT950式中电动机功率,;PKW160P电动机转数,。NRPM483NMN10348695T端面内分度圆上的名义切向力DF231式中中心轮输入转矩,;TMN103T中心轮的分度圆直径,。D72DN9537103F中心轮齿面接触应力的计算HA(318)ZKUBDEHHVA211式中端面内分度圆上的名义切向力,;FN9537F分度圆直径,;DM72D齿宽,;B50齿数比,;U1U使用系数,由文献17查得;AK751AK动载系数,由文献17查得;VV齿向载荷分布系数,由文献17查得;H521H齿间载荷分布系数,由文献17查得;KK节点区域系数,由文献17查得;HZ81HZ弹性系数,由文献17查得;E9E重合度系数,由文献17查得。09081251721507293HAMN18中心轮许用齿面接触应力的计算HPHPLIMLIMXWRVNSZ2MN1350950HPHA13508安全系数LIM124HPSS中心轮齿面的强度符合要求。(2)中心轮齿根弯曲强度校核中心轮齿根应力的计算FA319BMYKESFVA式中端面内分度圆上的名义切向力,FN9537齿宽,BM50模数,8使用系数,;AK71AK动载系数,;VV载荷分布系数,由文献17查得;F81FK载荷分配系数,由文献17查得;K2齿形系数,由文献17查得;FY75FY修正系数,由文献17查得;S1S重合度系数,由文献17查得。E35E1721875180953FA2MN594中心轮许用齿根应力的计算FPLIMLIMFXRRELTSTSY式中弯曲疲劳极限,;LIMF2LIMN50F应力修正系数,由文献17查得;STYSTY敏感系数,由文献17查得;RELTY1RELTY表面系数,由文献17查得;RRELTRRELT尺寸系数,由文献17查得;X980X安全系数,由文献17查得。LIMFS21LIMFS9801250FP2NFPFA4安全系数215198LIMPSS中心轮齿根强度符合要求。(3)行星轮齿面接触强度校核行星轮齿面接触应力的计算HC320ZKUBDFEHHVA211式中分度圆直径,;DM152齿宽,;B40齿向载荷分布系数,由文献17查得;HK31HK齿间载荷分布系数,由文献17查得;0重合度系数,由文献查得17。Z1Z189375214015293721HCMN8行星轮许用齿面接触应力的计算HPHPLIMLIMXWRVNSZ2MN1350950HPHC1350784安全系数LIM172HPSS所以行星轮齿面强度符合要求。(4)行星轮齿根弯曲强度校核行星轮齿根应力的计算FC321BMYKESFVA式中齿宽,;BM40载荷分布系数,由文献17查得;FK51F载荷分配系数,由文献17查得;0K齿形系数,由文献17查得;FY52FY修正系数,由文献17查得。S71S3520571840953FC2MN469行星轮许用齿根应力的计算FPLIMLIMXRRELTSTFPSY219802502FPFC8946安全系数2112LIMFPSS所以行星轮齿根强度符合要求。339根据齿面接触强度确定内齿轮材料(322)2LIMN/709090812517593XWRVNEHAHZKUDBF根据选用内齿轮材料为并进行表面淬火和氮化,表面硬度达LIMHCRMO即可。B28043310验算传动的齿面接触强度和齿根弯曲强度C传动中齿轮为内啮合,行星齿轮传动的承载能力主要取决于外啮合,故传动的校核可以省略。C34低速级齿轮的设计计算341配齿计算取,由于距可能达到的传动比极限较远,所以可以不检验邻接条件。5SC56BAXI确定各齿轮齿数,减速器齿轮传动的配齿公式计算。323NCZISABXASBZN21C式中行星减速器低速级减速比,;BAXI56BAXI行星减速器低速级中心轮齿数;Z整数,;N12行星减速器低速级内齿轮齿数;BZ行星减速器低速级行星轮齿数。C1256AZ012BZ05C采用不等角变位,可取或2019若取,则,由文献16可查出适用的预计啮合角在20CZ5CABZJ、到、的范围内;若取,则A318B24B19CZ,预计适用啮合角在、到、0695CABZJ25AC204B3AC的范围内。2B若取,与各齿轮齿数之间不应存在公因数相违背;应取,且与公因数0C19CZ相符,预取。328A342按接触强度初算传动的中心距和模数C低速级输入转速324IN式中电动机输入转速,;NRPM1483N高速级减速比,。I56IRPM1285643N低速级输入功率(325)P式中电动机输入功率,;PKW160型行星齿轮传动效率,。NGW9539低速级输入转矩(326)NPT950式中低速级输入功率,;PKW6153低速级输入转速,。NRPM28NN64301950T在对传动中,中心轮传递的转矩CA(327)CSAKCT式中低速级输入转矩,;TMN6430T载荷不均匀系数,由文献16查得;CK15CK行星轮数目,。SC5SCMN147956430AT齿数比910ACZU中心轮和行星轮的材料用渗碳淬火,中心轮和行星轮齿面硬度均为RMO20,则试验齿轮的接触疲劳极限。HRC6352LIMN/15H许用接触应力HPLILIMHXWRVNSZ20式中试验齿轮的接触疲劳极限,;LIMH2LIMN/15H计算接触强度的寿命系数,;NZNZ速度系数,;V1VZ粗糙度系数,;RR工作硬化系数,;WZ1W接触强度计算的尺寸系数,;XXZ计算接触强度的最小安全系数,。LIMHS1LIMHS根据文献16齿面强度计算公式计算中心距328321HPAAAUKT式中钢对钢配对的齿轮副常系数,;AA483AA齿数比,;U91U载荷系数,;K8齿宽系数,;A70A许用接触应力,。HP2N/M15HPM1350917489148332A齿轮模数31905CAZAM在强度和结构都允许的情况下模数取值,即取M传动的未变位时的中心距CA14590212CAACZA按预取啮合角,可得传动的中心距变动系数3081COS21ACACZ式中标准压力角,。0901328COS192AC则传动的实际中心距CAM91540145MAAC圆整后取实际中心距A343计算传动的实际中心距变动系数和啮合角ACAC传动的实际中心距变动系数CAAC(329)MA式中圆整后的实际中心距,;A15未变位时的中心距,;AC4ACA齿轮模数,。MM01045AC传动的啮合角CA8790622COS16CSCOSAAC278344计算传动的变位系数CATAN2IVIZXACAC式中啮合角的渐开线函数,;ACINV04583ACINV标准压力角的渐开线函数,。12147294091ACX利用文献16校核,在许用区内。根据文献16分配变位系数,得58AX630421C345计算传动的中心距变动系数和啮合角BCCBCB传动的未变位是的中心距M1590212CBCZMA则A93620COS124CSCOSCB346计算传动的变位系数TAN2IVIZXCBBC式中啮合角的渐开线函数,。CBINV0158CBINV72940195CBX63CX347几何尺寸计算由表32计算各个齿轮的分度圆直径M10AMZD5B190CD式中分别是中心轮、内齿轮和行星轮的分度圆直径。CBADM计算各个齿轮齿顶高齿顶高变位系数2140635840ACACXBB计算传动时中心轮和行星轮齿顶高A(330)MXHACAA式中齿顶高系数,;AH1A齿轮模数,。MM0M71302458AAH1646XACC计算传动时行星轮和内齿轮齿顶高B3031XHCBACM73106MXHCBAB由于在行星传动中,行星轮主要与中心轮啮合,而与内齿轮的啮合精度不要求太高,所以选M316ACH计算各个齿轮的齿根高(331)MXCHAAFA式中齿根系数标准值,;C250C齿轮模数,。MM1M61084FAH18325XCBAFB26001HCFC各个齿轮的齿顶圆直径M912AAAAD804650BBH213192ACACD各个齿轮的齿根圆直径M680FAFAH537125FBFBD690FCFCH计算齿轮的齿宽行星轮齿宽M13907CDB圆整后取中心轮齿宽,M108A行星轮齿宽,M140CB内齿轮齿宽。2B348验算传动的齿面接触强度和齿根弯曲强度A(1)中心轮齿面接触强度校核中心轮输入转矩332IIIT式中高速级输入转矩,;ITMN103I高速级减速比,。II56II9103I端面内分度圆上的名义切向力DTFI25式中中心轮输入转矩,;ITMN69I中心轮的分度圆直径,。D10D2785F中心轮齿面接触应力的计算HA333ZKUBDEHHVA211式中端面内分度圆上的名义切向力,;FN26780F分度圆直径,;DM10D齿宽,;B8齿数比,;U9U使用系数,;AK751AK动载系数,;VV齿向载荷分布系数,由文献17查得;H21HK齿间载荷分布系数,由文献17查得;K80节点区域系数,由文献17查得;HZ52HZ弹性系数,由文献17查得;E819E重合度系数,由文献17查得。00189521827519108267HA2MN135中心轮许用齿面接触应力的计算HPHPLIMLIMHXWRVNSZ2N150式中速度系数,由文献17查得;VZVHPHA1503安全系数LIM18HPSS低速级中心轮的齿面接触强度满足要求。(2)中心轮齿根弯曲强度校核中心轮齿根应力的计算FA334BMYKESFV式中端面内分度圆上的名义切向力,;FN26780齿宽,;BM108模数,;MM10载荷分布系数,由文献17查得;FK582FK载荷分配系数,由文献17查得;0齿形系数,由文献17查得;FY62FY修正系数,由文献17查得;S1S重合度系数,由文献17查得。E26E26180517018267FA2MN3475中心轮许用齿根应力的计算FP(335)LIMLIMFXRRELTSTSY式中弯曲疲劳极限,;LIMF2LIMN50F应力修正系数,;STY2STY敏感系数,;RELT1RELT表面系数,;RRELTRRELT尺寸系数,;XY980XY安全系数,。LIMFS21LIMFS98050P2MNFPFA347安全系数2181589LIMFPSS低速级中心轮齿根强度符合要求。(3)行星轮齿面接触强度校核行星轮齿面接触应力的计算HC336HCZKUBDFEHHVA211式中行星轮的分度圆直径,;DM190齿宽,;B140齿数比,;U9U齿向载荷分布系数,由文献17查得;HK5871HK重合度系数,由文献17查得。ZZ189052857191140926781HC2MN行星轮许用齿面接触应力的计算HPHPLIMLIMHXWRVNSZ2N150PC9718安全系数LIM108250HHPSS低速级行星轮齿面强度符合要求。(4)行星轮齿根弯曲强度校核行星轮齿根应力的计算FC337BMYKESFVA式中齿宽,;BM140模数,;M动载系数,由文献17查得;VK90VK载荷分布系数,由文献17查得。F42F26180429751042678FC2MN3行星轮许用齿根应力的计算FPLIMLIMXRRELTSTFPSY21980252FPFC8931安全系数212LIMPSS低速级行星轮齿根强度符合要求。349根据齿面接触强度确定内齿轮材料2LIMN/573900189528175190681XWRVNEHAAHZKUBDF根据选用内齿轮材料并进行表面淬火和氮化,表面硬度达LIMHCRMO即可。B2804在分别计算高速级和低速级的内齿轮时,分度圆直径、齿根高直径和齿顶高直径几乎相同。从内齿轮的作用角度考虑,可以把高速级和低速级的内齿轮做成一个整体,对整个减速器的影响可以忽略。为了更好的保证减速器的同心性,可以简化加工数量和安装过程。3410验算传动的齿面接触强度和齿根弯曲强度BC传动为内啮合,行星齿轮传动的承载能力主要取决于外啮合,故传动的BC校核可以省略。35输入输出轴的设计计算351输入轴的设计计算1求输入轴上的功率、转速和转矩1P1N1T由于电动机输出轴通过花键套与减速器的输入轴联接,所损失的功率可以忽略不记,那么可以得、P1N1MN0348695011NT2初步确定轴的最小直径先按估算轴最小直径公式初步估算输入轴的最小直径。选取轴的材料为钢调质处45理。根据文献19取于是得1260A(338)M985143602310MINPD3轴结构设计(1)拟定轴上零件的装配方案输入轴,轴用套筒,轴承、轴用套筒、轴承端盖依次从轴的右端向左端安装。零件定位是根据减速器箱体,轴用套筒和轴承端盖来保证。零件周向定位是用花键,花键轴的小径来定心。图33所示图33输入轴装配方案FIGURE33INPUTSHAFTASSEMBLYSOLUTIONS(2)轴向定位要求来确定轴各段直径与长度根据轴的受力,选取型角接触球轴承反装。是为了便于安装的时候选取轴DB/721承处直径,其宽度,两个轴用套处采用相同直径,套筒和轴承的总M851DM8宽度为。齿轮处分度圆直径和齿宽在行星轮高速级中已经确定。花键处长度要考虑94定心情况下取。724作用于齿轮上的力;由于减速器高速级的中心轮与减速器的输入轴,是一个整体齿轮轴那么高速级中心轮的分度圆直径为M7298AZD单个行星轮作用在中心轮上时的圆周力TF(339)ASTDCT10式中输入轴转矩,;1TN103T行星轮数目,;SCSC中心轮的分度圆直径,。ADM72ADN468310TF中心轮承受的径向力R17350COS2TAN4768COSTANR单个行星轮,作用在中心轮轴上的力,TXFRRY三个行星轮一同作用在中心轮轴上的总力及转矩为0即、XR0YMN95142037468SATCDFT圆周力,径向力的方向如图34所示TRRXFRYTDATCS图34输入轴受力图FIGURE34INPUTSHAFTTRYINGTO5求支反力通过对输入轴上的中心齿轮受力分析后,可以看到中心轮在工作过程中,由于行星轮的缘故,在方向上中心轮所受到的合力为零。而花键联接处同样是只有转矩输入,YX,并且在不考虑到自重和零件在制造、安装误差所产生的力,那么输入轴只受到转矩。6作转矩图(如图35)MN103T图35输入轴转矩图FIGURE35INPUTSHAFTTORQUEFIGURE352输出轴的设计计算1求输出轴上的功率、转速和转矩2P2N2T在经过二级行星减速器后的功率为KW417960122P式中输入轴的功率,;1PKW601型行星齿轮传动效率,。NGW96经过二级行星减速器后输出转速为RPM42NPT2初步确定轴的最小直径先按估算轴最小直径公式初步估算输入轴的最小直径。选取轴的材料为45钢调质处理。根据文献19取。1260AINPD3轴的结构设计(1)拟定轴上零件的装配方案输入轴、轴承、孔用挡圈、轴套、承端盖依次从轴的左端向右端安装,而零件定位是以减速器箱体、轴承以及轴承端盖等来保证的。零件的周向定位是通过花键,按花键轴小径定心。如图(2)根据轴向定位的要求确定轴的各段直径和长度根据图36所示,由轴的受力选取型调心滚子轴承一对反装。为了便3/23940WC于安装选取轴承处的直径,其宽度,套筒和轴承的总宽度为M03DM82B。花键处长度在考虑定心的情况下取。145M14D图36输出轴装配方案FIGURE36OUTPUTSHAFTASSEMBLYSOLUTIONS4求作用在齿轮上的力在整个行星轮系中,中心轮、行星轮、行星架以及内齿轮,它们在传动过程中载荷均衡,每个元件的圆周力和径向力都相互抵消。所以输出轴在不考虑自重和零件在制造、安装误差所产生的力,那么输出轴只受到转矩。这样与输入轴一样只作轴的转矩图5作转矩图MN26780T图37输出轴转矩图FIGURE37OUTPUTSHAFTTORQUE36减速器轴承的校核361齿轮用轴承的选择1高速级行星轮用轴承的选择(1)轴承的选择由于行星轮在整个传动中,行星轮只受较大的径向载荷,在轴向不受载荷,但是在浮动时行星轮有少量的轴向错动。所以根据常用的滚动轴承性能和特点,高速级行星轮用轴承选用双列圆柱滚子轴承。它具有结构紧凑、刚性大、承载能力大、受载501AR后变形小等特点,最主要的是它的厚度小。它的基本尺寸和数据如表33表33圆柱滚子轴承的技术参数501ARTABLE33TECHNOLOGYPARAMETERSOFCYLINDRICALROLLERBEARING基本尺寸M/基本额定载荷KN/极限转速1MINR/重量KGDDBRCOR脂油W5572185268486390048000125表34NGW型各元件受力计算公式TABLE34NGWMODELEDEACHELEMENTSTRESSCALCULATIONFORMULA注1表中公式适用于行星轮数目的2SC直齿或人字齿轮行星传动。2式中为法向压NA力角,为分度圆上的螺旋角,为中心轮AR分度圆半径。3转矩单位为;长MN度单位为;力的单位为。项目中心轮A行星轮C行星架X内齿轮B切向力ASTCRTF10TBTATFTACXTXFR2RCATTF径向力NTCARFARBCNTACOSA0XYRRBRCF单个行星轮作用在轴上或行星轮轴上的力RCAYXFR02YCTAXRF02YXTACTXRFRCBYTXR各行星轮作用在轴上的总力及转矩10SARCYXFTR0YCXR对行星轮轴的转矩0TBAXXYXITR0ABYXZTR0(2)轴承的校核求轴承受到的径向载荷1RF由表34求高速级行星轮的径向力,RACASTT10NTCRAFATBTTRCNTCARFFCOSA由上面四个公式可得且有N364RACN3641RAC因为轴承没有受到轴向力,所以轴向力0AF求轴承当量动载荷1P因轴承运转中无冲击载荷,则111ARPFYXF式中径向动载荷系数,由文献19查得;1X1轴向动载荷系数,由文献19查得;Y0Y经验载荷系数,由文献19查得。PFPFN36401(3)验算轴承使用寿命轴承的预期计算的使用寿命H2HL行星轮的转速1CN11NZCA式中高速级中心轮齿数,;AZ9A高速级行星轮齿数,;C1CZ高速级输入转速,。1NR/MIN483702
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 兽用生物制品安全管理规范
- 焊剂烧结熔炼工内部技能考核试卷及答案
- 烫呢(光)挡车工专业知识考核试卷及答案
- 木结构房屋地板施工方案
- 幼儿园春季户外活动安全管理措施
- 积极循环持续成长 教学设计-2023-2024学年高中心理健康
- 建筑方案设计属于哪个行业
- 主管护士考试题及答案
- 部编版语文课文教学教案及活动建议
- 进店咨询方案赠送
- 学生手册超级题库
- 现金收付业务管理办法
- 《多元统计分析-基于R(第3版)》课件全套 费宇 第1-13章-多元统计分析与R简介-多维标度分析
- 法学论文开题报告模板范文
- 2024年山东省高考物理试卷(真题+答案)
- 人音版小学六年级上册音乐教案 全册
- 2024年国家义务教育质量监测体育与健康学科成绩提升培训会
- DLT 5630-2021 输变电工程防灾减灾设计规程-PDF解密
- 装饰图案-从图案到设计作业
- 眼科手术器械的清洁与消毒
- 《小英雄雨来》读书分享会
评论
0/150
提交评论