




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Z.Panetal.(Eds.):ICAT2006,LNCS4282,pp.785795,2006.Springer-VerlagBerlinHeidelberg2006RecognitionandLocationofFruitObjectsBasedonMachineVisionHuiGu,YayaLu,JilinLou,andWeitongZhangInformationEngineeringCollege,ZhejiangUniversityofTechnology,310014,Hangzhou,C,oo327,phonixlou,Abstract.Thispaperdiscussedthelowlevelmachinevisiononfruitandvegetableharvestingrobot,introducedtherecognitionandlocationoffruitandvegetableobjectsundernaturescenes,putforwardanewsegmentationmethodcombinedwithseveralcolormodels.Whatsmore,itpresentedanovelconceptionforthedeterminationoftheabscissionpoint,successfullyresolvedthelocationofcenterandabscissionpointwhenthefruitwerepartiallyoccluded.Meanwhile,bythetechniqueofgeometry,itsettledthelocationsoftheabscissionpointwhenthefruitgrewaskew.Itprovedgoodeffectunderthenaturescene.Keywords:Machinevision,fruitobject,recognition,location.1IntroductionDuringtheprocessofhumanconqueringtheNature,rebuildingtheNatureandpromotingthesociety,humansarefacingtheproblemofabilitylimitation.Asaresult,humanshavebeenseekingfortherobotstosubstitutethemantocompletecomplicatedtasks,andtheintelligentrobotisthebestchoice.Asweallknow,visionisthemainwayofhumansapperceivingtheworld.About80%informationisgotthroughvision.So,itisvitaltograntvisionfunctionforintelligentrobots.Here,wecandefinethemachinevisionasfollows:itisabletoproducesomedescriptionaboutthecontentoftheimageafterprocessingtheinputimage1.Therearemanyfieldsrelatedwithmachinevision.So,italsohasawideapplicationinvariousaspects,frommedicalimagetoremotesensedimage,fromindustrialinspectiontoagriculturalareas,etc.Thefruitandvegetableharvestingrobotwhichwearegoingtodiscussisonekindofautomaticmechanicalharvestingsystemspossessingtheperceptiveability,canbeprogrammedtoharvest,transferandpackthecrops2.Duringtheprocessofharvesting,thechiefproblemofthevisionsystemistorecognizeandlocatethefruitobject3.Here,recognitionmeanssegmentationofthefruitobjectsfromthecomplicatedbackground4.Andlocationincludestwoaspects:locationofthefruitcenterandabscissionpoint.786H.Guetal.Recently,thereremanyresearchesaboutfruitandvegetableharvestingrobotbasedonmachinevision56.CaiJian-rongpresentedthemachinevisionrecognitionmethodsunderthenaturescene.UsingtheOtsualgorithm,itgotthesegmentationthresholdautomaticallyandextractedthetarget7.Miyanagaintroducedtheseedinggraftingtechniquebasedonmachinevisionandtherobotinventedbythemhasbeenputintoproduction8.SlaughterD.Csetuponeorangeclassiermodelbyusingthecolorfeatureinthechromaticdigitalimage9.Amongtheseresearches,therehavebeenmanymethodsofextractingthefruitsfromcomplicatednaturescene.Butthebasicconceptionisextractingthefruitobjectbyconvertingonecolormodeltoanotheronewhichiseasiertoprocessormuchmoresuitableforthecase.However,still,therearetwoproblemsremainunsettled:1)Howtodeterminetheabscissionpointwhenthefruitsgrowaskew;2)Howtodeterminethecenterandabscissionpointwhentherearesomanyfruitoverlappedeachotherthatitisimpossibletodetectthewholeedge.Ifbothoftheproblemsremainunsettled,itmeanstheharvestingmaybeafailure.And,whatismoreimportant,thereisonlyabout40%ofthefruitandvegetableisvisibleintheorchard10,whichmeansabout60%objectsarepartiallyoccludedorcompletelyoccluded.Generally,theagriculturalrobotsarefitwithfanssoastoblowtheleavescoveringthefruit.So,forthefruitoccludedcompletely,itmaybepartiallyresolvedinthisway.So,inthepaper,weonlydiscussedtheproblemofthefruitpartiallyoccluded,inparticular,thecasethatonefruitoverlapanotherone.Asawhole,theproblemwearetodiscussbelongstothelowlevelmachinevision,andisoneofthekeystepsinthemachinevision.2MethodologyUsedinthePaper2.1MainIdeaFromtheanalysisabove,weknew,inordertosegmentthefruitfromleavesandbranches,weshouldusecolormodelsuitscertainsituations.TheRGBcolormodelcommonlyusedisnotsuitablefortheorchardimages.BecauseinRGBcolorspace,thetricolor(RGB)notonlyrepresentthehuevalue,butalsorepresentthebrightness.So,thechangeoftheoutwardilluminationmayaddthedifficultyoftherecognition,soRGBisundependableintheprocessofthesegmentation.Inordertomakeuseofthefruitsclusteringfeatureinhuespace,weneedtoseparatethehueandbrightnessinformation.WecanachievethisgoalbytransferringtheRGBtothemodelswhichseparatehueandbrightness.2.2ColorModelsWeusethreetypesofcolormodelsinthepaper.ThefirstoneisLCD(luminanceandcolordifference)model.Therearefourcolorattributesinthismodel,includingbrightnessinformationY,colordifferenceofred,Cr,colordifferenceofgreenCg,colordifferenceofblueCb.Thetransformformulaisasfollows:RecognitionandLocationofFruitObjectsBasedonMachineVision787=+=YBCYGCYRCBGRYbgr114.0587.0299.0.(1)Duringtheprocessofexperiment,wefoundthatthecolordifferenceofredoffruitismuchhigherthanthatofleavesorbranches,eventheunripefruit,suchasunripetomatothatwouldbereferredlater.SoweonlyhavetoconsideraboutthecolordifferenceofredCr.ThesecondmodelweusedisNormalizedRGB.Thediagramwasusedtorepresentthecolorpropertiesofthethreeportions.Thetransformformulaisdefinedasfollows:+=+=+=)/()/()/(BGRBbBGRGgBGRRr.(2)itisobviousitsatisfies:1=+bgr.Combinedtheadvantagesoftheabovetwomodels,wecanconcludethethirdcolormodelcalledLHMinthispaper.ChoosingYandCrfromthefirstcolormodel,randgfromthesecondmodel;wecanconstructtheformulaasfollow:+=+=+=)/()/(114.0587.0299.0BGRGgBGRRrYRCBGRYr.(3)3SegmentationUnderthenaturesceneoftheorchard,thefactorscontainingthenon-uniformillumination,theocclusionoftheleafandbranchallmakeitmoredifficulttosegment.Atpresent,wecanclassifythechromaticimagesegmentationintothreeclasses:(1)Segmentationbasedonthreshold;(2)Segmentationbasedonedgeinspectingandareagrowing;(3)Segmentationbasedoncolorclustering11.3.1ClusteringandClassifierTheprimaryconceptionofclusteringistodistinguishthedifferentobjectswhichincludedifferentclassesofobjectsanddifferentpartsofthesameobject12.Allclassificationalgorithmsarebasedontheassumptionthattheimageinquestiondepictsoneormorefeaturesandthateachofthesefeaturesbelongstooneofseveraldistinctandexclusiveclasses.Thetraditionalwayofclassifiercomprisestwophasesofprocess:trainingandtesting.Intheinitialtrainingphase,characteristicpropertiesoftypicalimagefeaturesareisolatedand,basedonthese,auniquedescriptionofeachclassificationcategory,i.e.trainingclass,iscreated.Inthesubsequenttestingphase,thesefeature-spacepartitionsareusedtoclassifyimagefeatures.788H.Guetal.Intheexperiment,wesampled60pixelsofleaf,branch,andfruitrespectivelyandconstructedaclassifier.Adoptingtwofeaturepatternsmandn,weformedthedecisionfunctions:cbnamnmf+=),(,wherea,b,andcarearbitraryconstantsaslongasthepointsonthelinesatisfiesthecondition0),(=nmf.Here,featurepatternmaybecolor,shape,size,oranypropertiesoftheobjects.Accordingtothedecisionfunctions0),(nmfor0),(nmf,wecandividetheimageintotwopartsasshowninFig1:.Fig.1.Modelofclassifier3.2SegmentationoftheFruitObjectsInthisstudy,weadoptedthesegmentationmethodofseveralthresholds.Thethresholdsarederivedfromtheabovethreemodelsoftheimageusingthedecisionfunctions.Accordingtotheaboveparagraphs,wecouldgetthreedecisionfunctions:thefirstfunction,F1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025江苏镇江市卫生健康委员会所属镇江市第一人民医院招聘工作人员50人模拟试卷及答案详解(名师系列)
- 2025年威海市水产学校公开招聘教师(7人)模拟试卷及1套参考答案详解
- 2025湖南株洲市石峰区公益性岗位(第二批)开发计划模拟试卷带答案详解
- 2025广东广州市黄埔区穗东街道庙头社区合同制人员招聘5人考前自测高频考点模拟试题及答案详解(夺冠系列)
- 2025年安康宁陕县选拔调配工作人员(3人)模拟试卷及答案详解(网校专用)
- 2025广东省事业单位招聘高层次和急需紧缺人才237人模拟试卷参考答案详解
- 2025广西崇左市江州区消防救援大队招聘政府消防文员2人考前自测高频考点模拟试题及答案详解(名师系列)
- 2025年2月广东广州市海珠区人民法院招聘劳动合同制法官助理、书记员招聘拟聘人选考前自测高频考点模拟试题及答案详解(易错题)
- 2025鄂尔多斯市乌审旗人力资源和社会保障局征集就业见习人员的模拟试卷及答案详解(有一套)
- 2025年甘肃省民航航空发展有限公司职业经理人选聘模拟试卷及答案详解(名师系列)
- 城乡燃气管道维护保养技术方案
- 2025年西藏公开遴选公务员笔试试题及答案(A类)
- 水土保持治理工应急处置考核试卷及答案
- 初中学生心理健康辅导手册
- 工业园区储能项目商业计划书
- 仓库搬运安全培训内容课件
- 抗炎药物作用机制研究-洞察及研究
- 2025至2030中国航空保险行业项目调研及市场前景预测评估报告
- (2025年标准)吊篮移交协议书
- 中专院校普法课件
- 水泵检修基础知识培训课件
评论
0/150
提交评论