已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Z.Panetal.(Eds.):ICAT2006,LNCS4282,pp.785795,2006.Springer-VerlagBerlinHeidelberg2006RecognitionandLocationofFruitObjectsBasedonMachineVisionHuiGu,YayaLu,JilinLou,andWeitongZhangInformationEngineeringCollege,ZhejiangUniversityofTechnology,310014,Hangzhou,C,oo327,phonixlou,Abstract.Thispaperdiscussedthelowlevelmachinevisiononfruitandvegetableharvestingrobot,introducedtherecognitionandlocationoffruitandvegetableobjectsundernaturescenes,putforwardanewsegmentationmethodcombinedwithseveralcolormodels.Whatsmore,itpresentedanovelconceptionforthedeterminationoftheabscissionpoint,successfullyresolvedthelocationofcenterandabscissionpointwhenthefruitwerepartiallyoccluded.Meanwhile,bythetechniqueofgeometry,itsettledthelocationsoftheabscissionpointwhenthefruitgrewaskew.Itprovedgoodeffectunderthenaturescene.Keywords:Machinevision,fruitobject,recognition,location.1IntroductionDuringtheprocessofhumanconqueringtheNature,rebuildingtheNatureandpromotingthesociety,humansarefacingtheproblemofabilitylimitation.Asaresult,humanshavebeenseekingfortherobotstosubstitutethemantocompletecomplicatedtasks,andtheintelligentrobotisthebestchoice.Asweallknow,visionisthemainwayofhumansapperceivingtheworld.About80%informationisgotthroughvision.So,itisvitaltograntvisionfunctionforintelligentrobots.Here,wecandefinethemachinevisionasfollows:itisabletoproducesomedescriptionaboutthecontentoftheimageafterprocessingtheinputimage1.Therearemanyfieldsrelatedwithmachinevision.So,italsohasawideapplicationinvariousaspects,frommedicalimagetoremotesensedimage,fromindustrialinspectiontoagriculturalareas,etc.Thefruitandvegetableharvestingrobotwhichwearegoingtodiscussisonekindofautomaticmechanicalharvestingsystemspossessingtheperceptiveability,canbeprogrammedtoharvest,transferandpackthecrops2.Duringtheprocessofharvesting,thechiefproblemofthevisionsystemistorecognizeandlocatethefruitobject3.Here,recognitionmeanssegmentationofthefruitobjectsfromthecomplicatedbackground4.Andlocationincludestwoaspects:locationofthefruitcenterandabscissionpoint.786H.Guetal.Recently,thereremanyresearchesaboutfruitandvegetableharvestingrobotbasedonmachinevision56.CaiJian-rongpresentedthemachinevisionrecognitionmethodsunderthenaturescene.UsingtheOtsualgorithm,itgotthesegmentationthresholdautomaticallyandextractedthetarget7.Miyanagaintroducedtheseedinggraftingtechniquebasedonmachinevisionandtherobotinventedbythemhasbeenputintoproduction8.SlaughterD.Csetuponeorangeclassiermodelbyusingthecolorfeatureinthechromaticdigitalimage9.Amongtheseresearches,therehavebeenmanymethodsofextractingthefruitsfromcomplicatednaturescene.Butthebasicconceptionisextractingthefruitobjectbyconvertingonecolormodeltoanotheronewhichiseasiertoprocessormuchmoresuitableforthecase.However,still,therearetwoproblemsremainunsettled:1)Howtodeterminetheabscissionpointwhenthefruitsgrowaskew;2)Howtodeterminethecenterandabscissionpointwhentherearesomanyfruitoverlappedeachotherthatitisimpossibletodetectthewholeedge.Ifbothoftheproblemsremainunsettled,itmeanstheharvestingmaybeafailure.And,whatismoreimportant,thereisonlyabout40%ofthefruitandvegetableisvisibleintheorchard10,whichmeansabout60%objectsarepartiallyoccludedorcompletelyoccluded.Generally,theagriculturalrobotsarefitwithfanssoastoblowtheleavescoveringthefruit.So,forthefruitoccludedcompletely,itmaybepartiallyresolvedinthisway.So,inthepaper,weonlydiscussedtheproblemofthefruitpartiallyoccluded,inparticular,thecasethatonefruitoverlapanotherone.Asawhole,theproblemwearetodiscussbelongstothelowlevelmachinevision,andisoneofthekeystepsinthemachinevision.2MethodologyUsedinthePaper2.1MainIdeaFromtheanalysisabove,weknew,inordertosegmentthefruitfromleavesandbranches,weshouldusecolormodelsuitscertainsituations.TheRGBcolormodelcommonlyusedisnotsuitablefortheorchardimages.BecauseinRGBcolorspace,thetricolor(RGB)notonlyrepresentthehuevalue,butalsorepresentthebrightness.So,thechangeoftheoutwardilluminationmayaddthedifficultyoftherecognition,soRGBisundependableintheprocessofthesegmentation.Inordertomakeuseofthefruitsclusteringfeatureinhuespace,weneedtoseparatethehueandbrightnessinformation.WecanachievethisgoalbytransferringtheRGBtothemodelswhichseparatehueandbrightness.2.2ColorModelsWeusethreetypesofcolormodelsinthepaper.ThefirstoneisLCD(luminanceandcolordifference)model.Therearefourcolorattributesinthismodel,includingbrightnessinformationY,colordifferenceofred,Cr,colordifferenceofgreenCg,colordifferenceofblueCb.Thetransformformulaisasfollows:RecognitionandLocationofFruitObjectsBasedonMachineVision787=+=YBCYGCYRCBGRYbgr114.0587.0299.0.(1)Duringtheprocessofexperiment,wefoundthatthecolordifferenceofredoffruitismuchhigherthanthatofleavesorbranches,eventheunripefruit,suchasunripetomatothatwouldbereferredlater.SoweonlyhavetoconsideraboutthecolordifferenceofredCr.ThesecondmodelweusedisNormalizedRGB.Thediagramwasusedtorepresentthecolorpropertiesofthethreeportions.Thetransformformulaisdefinedasfollows:+=+=+=)/()/()/(BGRBbBGRGgBGRRr.(2)itisobviousitsatisfies:1=+bgr.Combinedtheadvantagesoftheabovetwomodels,wecanconcludethethirdcolormodelcalledLHMinthispaper.ChoosingYandCrfromthefirstcolormodel,randgfromthesecondmodel;wecanconstructtheformulaasfollow:+=+=+=)/()/(114.0587.0299.0BGRGgBGRRrYRCBGRYr.(3)3SegmentationUnderthenaturesceneoftheorchard,thefactorscontainingthenon-uniformillumination,theocclusionoftheleafandbranchallmakeitmoredifficulttosegment.Atpresent,wecanclassifythechromaticimagesegmentationintothreeclasses:(1)Segmentationbasedonthreshold;(2)Segmentationbasedonedgeinspectingandareagrowing;(3)Segmentationbasedoncolorclustering11.3.1ClusteringandClassifierTheprimaryconceptionofclusteringistodistinguishthedifferentobjectswhichincludedifferentclassesofobjectsanddifferentpartsofthesameobject12.Allclassificationalgorithmsarebasedontheassumptionthattheimageinquestiondepictsoneormorefeaturesandthateachofthesefeaturesbelongstooneofseveraldistinctandexclusiveclasses.Thetraditionalwayofclassifiercomprisestwophasesofprocess:trainingandtesting.Intheinitialtrainingphase,characteristicpropertiesoftypicalimagefeaturesareisolatedand,basedonthese,auniquedescriptionofeachclassificationcategory,i.e.trainingclass,iscreated.Inthesubsequenttestingphase,thesefeature-spacepartitionsareusedtoclassifyimagefeatures.788H.Guetal.Intheexperiment,wesampled60pixelsofleaf,branch,andfruitrespectivelyandconstructedaclassifier.Adoptingtwofeaturepatternsmandn,weformedthedecisionfunctions:cbnamnmf+=),(,wherea,b,andcarearbitraryconstantsaslongasthepointsonthelinesatisfiesthecondition0),(=nmf.Here,featurepatternmaybecolor,shape,size,oranypropertiesoftheobjects.Accordingtothedecisionfunctions0),(nmfor0),(nmf,wecandividetheimageintotwopartsasshowninFig1:.Fig.1.Modelofclassifier3.2SegmentationoftheFruitObjectsInthisstudy,weadoptedthesegmentationmethodofseveralthresholds.Thethresholdsarederivedfromtheabovethreemodelsoftheimageusingthedecisionfunctions.Accordingtotheaboveparagraphs,wecouldgetthreedecisionfunctions:thefirstfunction,F1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 完善长期护理保险制度促进居家养老
- 互联网移动技术
- 2026年剧本杀运营公司用火用电安全管理制度
- 2026年剧本杀运营公司新手玩家引导服务制度
- 2025年农业行业智慧农业技术应用与产量分析报告
- 2026年清洁能源行业创新报告及未来五至十年行业发展趋势报告
- 2025 小学五年级道德与法治新时代好少年标准课件
- 云技术开发介绍
- 护理开题报告技术路线
- 杭州会计面试题目及答案
- 中远海运集团笔试题目2026
- 飞利浦录音笔VTR7000使用手册
- 2024外研版新教材七年级上册英语新课程内容解读课件(深度)
- 中医耳鼻咽喉科学智慧树知到答案2024年浙江中医药大学
- 应征公民体格检查表
- 动静脉内瘘球囊扩张术
- JTG-D40-2002公路水泥混凝土路面设计规范-PDF解密
- 水厂及管网改扩建工程施工节能降耗主要措施
- 2023-2024学年贵州省遵义市小学语文六年级期末评估测试题详细参考答案解析
- 销售心理学全集(2022年-2023年)
- 变态反应课件
评论
0/150
提交评论