




已阅读5页,还剩12页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Large-scalenestingofirregularpatternsusingcompactneighborhoodalgorithmS.K.Cheng,K.P.Rao*Thetypicalnestingtechniquethatiswidelyusedisthegeometricaltiltingofasinglepatternorselectedclusterstepbystepfromtheoriginalpositiontoanorientationof1808,i.e.orthogonalpacking.However,thisisablindsearchofbeststocklayoutand,geometrically,itbecomesinefcientwhenseveralpatternentitiesareinvolved.Also,itisnothighlysuitableforhandlingpatternswitharangeoforientationconstraints.Inthispaper,analgorithmisproposedwhichcombinesthecompactneighborhoodalgorithm(CNA)withthegeneticalgorithm(GA)tooptimizelarge-scalenestingprocesseswiththeconsiderationofmultipleorientationconstraints.#2000ElsevierScienceS.A.Allrightsreserved.Keywords:Cuttingstockproblem;Nesting;Compactneighborhoodalgorithm;Geneticalgorithm;Orientationconstraints1.IntroductionThecuttingstockproblemisofinteresttomanyindustrieslikegarment,paper,shipbuilding,andsheetmetalindus-tries.GilmoreandGomory7haveinitiatedtheresearchworktosolvetherectangularcuttingstockproblembyusinglinearprogramming.Fortheirregularcase,Adamowicz1attemptedtouseaheuristicapproachwhichdividestheproblemintotwosub-problems,calledclusteringandnest-ing.Clusteringistospecifyacollectionofpatternsthattwelltogetherbeforenestingontoagivenstock.Nestingofpatternsorclusterscanbebroadlydividedintotwobroadcategories,namely,small-scaleandlarge-scale.Thediffer-encebetweenthemisthelevelofduplicationoftheclusteronthegivenstock.Forsmall-scalenesting,weonlyneedtondtheinter-orientationrelationshipbetweentheselectedclusterandthegivenstock4.However,theproblembecomesmorecomplicatedforlarge-scalenestingsincetheinter-spacerelationshipbetweentheduplicatedclustersshouldalsobeconsidered.Traditionally,twobasictechni-quesarepopularlyusedforgeneratingthistypeofnesting:hexagonalapproximationandorthogonalnesting.Atypicalpattern,showninFig.1a,withbothconcaveandconvexfeatures,isselectedtoexplainthesetechniques.The*Correspondingauthor.Tel.:852-2788-8409;fax:852-2788-8423.E-mailaddress:.hk(K.P.Rao)patterncontourisplottedwiththehelpofadigitizer,asshowninFig.1b,andhasanarea(Ap)of74.44sq.units.InthehexagonalapproximationsuggestedbyDoriandBen-Bassat5,thepatternisrstapproximatedusingaconvexpolygonwhichisfurtherapproximatedbyanotherconvexpolygonwithfewernumberofentitiesuntilanhexagonalenclosureisobtained,asshowninFig.1c.Thehexagonisthenpavedonagivenstockwithnooverlappingoftheformer6.TheresultantlayoutgeneratedbyuseofthistechniqueisgiveninFig.1e.Itisreadilyevidentthatthetechniqueisnothighlyefcientduetothepoorapprox-imationperformance,especiallyinthecaseofhighlyirre-gularpatterns.Anotherproblemisthatthepatternorclustercanassumetwopositionsonly(0or1808),withnoexploita-tionorconsiderationofotherpermissiblerangeoforienta-tions.Inthesecondtechnique,usedbyNee9,thenestingprocessisachievedbyapproximatingasinglepattern/clusterbyarectangleasshowninFig.1d.Thisrectangleisthenduplicatedinanorthogonalway,resultinginthelayoutshowninFig.1f.Thistechniquecanbeeasilyappliedwhenthereareno-orpartial-orientationconstraints,i.e.thesinglepatternorclustercanrotatewithinacertainrangewhilettingitonthestock.Likethehexagonalapproximation,themaindisadvantageofthisapproachisthatthealgorithmsperformanceishighlydependentontheshapeofpatterns.Moreover,inthecaseofmultipleorientationconstraints,the0924-0136/00/$seefrontmatter#2000ElsevierScienceS.A.Allrightsreserved.PII:S0924-0136(00)00402-7136S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.1.(a)ThechosenatpatternfordemonstratingtheworkingprincipleofCNAalgorithm;(b)patterncontourobtainedbydigitizer;(c)hexagonalapproximation;(d)orthogonalapproximation;(e)layoutgeneratedbyusinghexagonalapproximationyieldingastockutilizationof60.05%;(f)layoutgeneratedbyusingorthogonalapproximationyieldingastockutilizationof67.14%;and(g)layoutgeneratedbyusingCNAyieldingastockutilizationof74.10%.timetakentoestimateasuitablerotationangleforthepatternsisalwaysmuchlonger.Inordertoincreasetheaccuracyandspeedofnesting,ChengandRao4proposedacompactneighborhoodalgorithm(CNA)thatconsiderstherelationshipbetweenthenumberofneighborsandthesharingspacebetweenthem.Fig.1gshowsatypicallayoutgeneratedusingCNAwhichnormallyyieldshigherpackingdensitywhencom-paredwiththeorthogonalandhexagonalapproximations.However,CNA,initspresentform,hasbeenmainlydesig-natedfornestingofpatternswiththeconsiderationoffullorientationconstraints,andisnotidealforsituationswheremorefreedomisavailableintheorientationofpatterns.ThisstudyisaimedatimprovingtheexibilityofCNAbyincorporatingtheavailablefreedomintheorientationofpatternsandageneticalgorithm(GA)thatfollowsnaturalrulestooptimizethegeneratedlayouts.ThenewtechniqueistranslatedintoacomputerprogramwritteninCobject-orientedlanguage.Thenewalgorithmcanhandletheproblemofnestingtwo-dimensionalatpatternsofanyshapecontaininglinesegmentsandarcs.Withthehelpofatypicalexample,theenhancedcapabilitiesofCNAandtheassociatedcomputerprogramwillbedemonstratedinthispaper.2.Descriptionofcompactneighborhoodalgorithm(CNA)ACNA4tracksthecharacteristicsoftheevolvingneighborhoodswhenthepatternsaremovedtoformdifferentarrangements,assummarizedschematicallyinFig.2ac.Asthesheardisplacementincreases,theupperandlowerneighborstendtocollapseduetothechangeincrystallizationdirections.Finally,amostcompactstructureandanumericalvalueformaterialyield,calleduniversalcompactutilization(UCU),canbeobtained.NomatterFig.2.Typicalneighborhoodstructuresforcircularpatterns(a)formationoforthogonalpackingunitcellwithNn8andApu16r2;(b)shearingoflayersleadingtoshearedorthogonalpacking;and(c)bestcompactstructurewithhexagonalpackingunitcellwithNn6andAu63r2,whereAuistheareaofaunitcell,rtheradiusofcircularpatternandNnisthenumberofneighborstoconstructtheunitcell.S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140137Fig.3.(a)Stepsinvolvedinthegenerationofself-slidingpathtocreateaneighborhood;and(b)optimalneighborhoodstructurewithhexagonalpackingunitcellwithaUCUof83.07%.whetherthepatterncanberotatedornot,UCUindicatestheupperlimitofyieldthatmaybepossiblewithanychosenstockandhencecanberegardedasanindexforstoppingcriteriainthenestingprocess.Themainstepsinvolvedinndingthecompactneighbor-hoodare:(1)generatingaself-slidingpathorano-t-polygon(NFP)1,asshowninFig.3a,whichguidestherelativemovementbetweentwopatternswiththeconsidera-tionofnooverlapping;and(2)deningthecrystallizationdirections,asshowninFig.3b,thatprovideessentialdataforbuildingthewholeneighborhoodbyllingthegivenstockduringlarge-scalenesting.3.Proposedalgorithmforlarge-scalenestingTheproposedtechniquesofenhancingthecapabilitiesofCNAbytakingadvantageofageneticalgorithmaredealtinthissection.Aatpatterncanbedividedintoentitiesoflinesegmentsandarcs.Polygonalrepresentationmethods2expandthisstructuretolltheentirestock.Fornestingofpatternswithfullorientationconstraint,itisonlynecessarytodecideanestingvectorCDnthatdeneswheretheneighborhoodshouldbetranslatedaroundthegivenstock.However,inthecaseofnestingofpatternswithlimitedornoorientationlimitations,theproblembecomesmorecompli-catedduetoanincreaseinthepossiblecombinationsthatweneedtoconsider.Inthiscase,therststepwhichisglobalwithorwithoutorientationlimitationsistotranslatetheneighborhoodtoanarbitrarypositioninsidethegivenstock,i.e.deningavectorCDn.Afterward,anestingangleynistobedeterminedsothatagoodorientationisselectedfortheneighborhoodtogrow.Alltherequiredgeometricalopera-tionsaresummarizedinFig.4.ItiscriticaltooptimizeCDnandynwhichcannallyleadtoamostcompactneighborhoodstructure.Itisbelievedthattherearenouniquemathematicalstepstocalculatetheseparametersforanytypeofstock.Inaddition,wecannotacceptanexhaustivesearchbecauseoftheconstraintsposedoncomputationtime,especiallyinthecaseofnestingofpatternswithtoolongacomputationtime,especiallywhilenestingpatternswithmanyentitiesandconcavefeatures.Hence,inthisstudy,arecentpopularoptimizationtechni-que,calledGA,isapplied.Themainprincipleisprovidedinthefollowingsection.3.2.GAforoptimizinglayoutsGA8maintainsapopulationofcandidateproblemsolutions.Basedontheirperformance,thettestofthesesolutionsnotonlysurvive,and,analogoustosexualrepro-duction,exchangeinformationwithothercandidatestoformanewgeneration.Beforestartinganygeneticoperation,oneneedstodenethetnessfunctionandthecodingmethod.Asmentionedearlier,thegoalinnestingofpatternsistoreducethescrapbyttingtheclusterstogethersothattheyoccupyaminimumarea.Torepresentthecompactnessofaparticularlayout,onecanbecondentthatthemostdirectwayistorelateitwiththestockyieldfxYypy(1)canbeusedtorepresentbothconcaveandconvexarcsassetsofstraightlines.Theactualnumberoflinesisdependentontherequiredaccuracylevel.Also,clearanceoroffsetgen-erationisanessentialstepthatcontributestowardsthesuccessofCAD/CAMtechnology.Analgorithmtogeneratetherequiredoffset,calledthreepointislandtracing(TPIT)technique2,isincorporatedinthepresentnestingsystem.3.1.CNAforlarge-scalenestingIntheprevioussection,wehavealreadymentionedthebasicstepsinvolvedinobtainingthebestcompactneighbor-hood,asshowninFig.3b.Ournextconcernisthedetermi-nationofthebestpositiontoplacetherstpatternandxwherexistheareaofthegivenstockandythetotalareaofthepatternsthatcouldbecutoutfromthegivenstock.Codingcandirectlyandindirectlyinuencetheoptimi-zationprocess.Thisisbecauseourmainconcernishowtoxthetranslationposition(i.e.nestingvectorCDn)andthedegreeofrotation(i.e.nestingangleyn).Theyarethusselectedasthecodingparametersthatguidetheproperties(i.e.correspondingtonaturalchromosomes)forexchangeinthegeneticoperatorsofcross-overandmutation.3.3.ThegeneticoperatorsAsproposedbyHollandetal.8,theGAaimsatoptimizingthesolutionbymimickingnaturesevolutionary138S.K.Cheng,K.P.Rao/JournalofMaterialsProcessingTechnology103(2000)135140Fig.4.Translationoftheneighborhoodtoapre-denedpositionwithnestingvectorCDcess.LikehumanbeingsatypicalGAcontainsthefollowinggeneticoperators.3.3.1.InitializationAtthebeginning,a
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 仓储设施改造与仓储物流设备租赁合同
- 2025标准网签版建筑工程合同样本
- 2025年天津市房屋租赁合同标准范本模板
- 院感课件:《医院感染的诊断、报告与传染病疫情》
- 2025【合同范本】标准装修工程劳务分包合同
- 2025外派客服人员劳动合同范文
- 小学三年级禁毒教育教案
- 武汉城市学院招聘考试题库2024
- 小学二年级上册语文教学工作总结
- 儿科多选题试题及答案
- 国家职业技术技能标准 4-04-05-05 人工智能训练师 人社厅发202181号
- 小学数学知识讲座空间与图形统计与概率
- 民宿计划书及方案
- 蜗牛与黄鹂鸟(课件)人音版音乐二年级上册
- 危重病人的病情观察及护理完整版
- 高处作业复习题库(含答案)
- 人民警察内务条令知识题库
- 终止延期留用协议书
- 2024年保康县医疗保障服务中心综合管理岗招录1人《行政职业能力测验》高频考点、难点(含详细答案)
- 2024年广东省中考化学真题【含答案、详细解析】
- 2024年俄罗斯针灸针行业应用与市场潜力评估
评论
0/150
提交评论