




全文预览已结束
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExplorationAndSimulationofNeuralNetworkPIDInTemperatureControlSystemAbstract:ThispaperpresentsanewkindofintelligencePIDcontrolmethodonBPneuralnetworkandsomeofbasicconceptsaboutBPneuralnetwork.NeuralnetworkintelligencePIDcontrollerhasmanyadvancedpropertiescomparedwithtraditionalPIDcontroller.TheBPneuralnetworkPIDcontrolmethodisappliedtotemperaturecontrolsysteminindustryfield.Thesimulationresultsshowthatthecontrolmethodhashighcontrolaccuracy,strongadaptationandexcellentcontrolresults.Keywords:Neuralnetwork,PIDcontroller,Temperaturecontrolsystem1ForewordInindustrialprocesscontrol,PIDcontrolisabasiccontrolmethod,itsrobustness,simplestructure,easytoimplement,buttheconventionalPIDcontrolalsohasitsowndisadvantage,becausetheparametersofconventionalPIDcontrollerisbasedonbeingmathematicalmodelofcontrolledobjectidentified,whenthemathematicalmodeloftheobjectarechanging,non-lineartime,PIDparametersisnoteasyinaccordancewithitsactualsituationandmakeadjustments,theimpactofthequalitycontrolsothatthecontrolofthequalitycontrolsystemdecline.Especiallyinthepuretime-delaycharacteristicswiththeindustrialprocess,theconventionalPIDcontrolmoredifficulttomeettherequirementsofthecontrolaccuracy.Becauseofneuralnetworkswithself-organization,self-learning,adaptivecapacity,Inthispaper,basedonBPneuralnetworkPIDcontroller,sothatartificialneuralnetworkPIDcontrolwiththetraditionalcombinationofeachotherandjointlyimprovequalitycontrolandtothemethodinthetemperaturecontrolsystemusingthesimulationlanguageMatlabapplication.2BPneuralnetworkmodelandalgorithmconstitute2.1BPneuralnetworkmodelconstituteBPneuralnetworklearningprocessconstitutedmainlybytwostages:Thefirstphase(forwardpropagation),theinputsignalthroughtheinputlayer,hiddenlayerafterlayer-by-layertreatment,intheoutputlayeriscalculatedforeachneurontheactualoutputvalue.Thesecondstage(theprocessoferrorback-propagation),ifnotintheoutputlayerthedesiredoutputvalue,theactuallayer-by-layerrecursiveoutputanddesiredoutputofthemargin,andtherighttoadjustthebasisofthiserrorfactor.2.2TheneuralnetworkPIDcontrollerstructureandalgorithmInthetraditionalPIDcontrol,classicalincrementalPIDcontrolforms:u(k)=u(k-1)+pe(k)-e(k-1)+ie(k)+de(k)-2e(k-1)+e(k-2)Kp:proportionalcoefficienti=iop:Integralcoefficientodpd:DifferentialcoefficientSetupBPneuralnetworkPIDcontrollerstructure:r(k)e(k)u(k)y(k)+_y(k)Adaptiveinordertoachievedip,ofthepurpose,theoutputlayerforthethreeneurons,correspondingtodip,.Inputlayer,hiddenlayerneurons,thenumberofchargedobjectsinaccordancewiththecomplexityoffixed.Hiddenlayeractivationfunctionusedforthepositiveandnegativesymmetricalsigmoidfunction:xxxxeeeexxf)tanh()(Outputlayeractivationfunctionoftheuseofnon-negativesigmoidfunction:xxxeeexxg2)tanh(1)(Weassumethato31,o32,o33istheoutputofoutputlayer,whichcorrespondtop,i,d.Wetaketheperformanceindexfunctionasfollows:2)1()1(21kykrJWhentheactualoutputandthedeviationbetweenthedesiredoutput,thentheerrorback-propagation.Reversethespreadofthesubstanceisbyadjustingtheweightssothatthesmallestdeviation,itcanusethesteepestdescentmethod,errorfunctionbyanegativegradientdirectiontoalllevelsofneuronweightstoadjustoramend.Thenhave:NNPIDNNPlantNNArithmetic)1()3(kwli=-)()3()3(kwwJlili:Learningrate:MomentumofAvailablebythechainrule:)3(liwJ=)3()3()3()3()3()()()()()1()1(lillllwknetknetOOkukukykyJ=-e(k+1)3()3()3()3()3()()()()()1(lillllwknetknetOOkukukyOne:l=1,2,3SoBPneuralnetworkcanbetheoutputlayerweightsofthecalculationformula:)()()1()3()2()3()3(kwkOkwliilliOfwhich:)(*)()(*)()1(sgn()1()3(,)3()3(knetgkOkukukykelllBecauseofthePIDcontrol)()1(kukyalgorithminnormalcircumstancesareunknown,canbeusedtoreplacefunctionsymbols)()1(sgnkuky,andthroughadjustmentstocorrecterrors.Empathycanbehiddenlayerweightcoefficientcalculationformula:)()()2()1()2()2(kwkOwijjiijOfwhich:)()()3(31)3()2()2(kwknetflillii,Intheabovevarioustypes,theScorner(1),(2),(3)express,respectively,inputlayer,hiddenlayer,outputlayer,l:Thenumberofoutputlayerneuronsi:Thenumberofhiddenlayerneuronsj:Thenumberofinputlayerneurons)(1)(xgxgg2/)(12xffBasedontheabovecanbeBPneuralnetworkcontrolalgorithms:(1)determinetheneuralnetworkarchitecture,initializedweightsoneachfloor.Controlthevolumeofoutput,errorchecktheinitialvalue0.(2)ofthesamplingsystemhasbeen)(kr、)(ky.Calculatedbytheerror)()()(kykrke.AndundertheincrementalPIDalgorithmtotheerrorcomponentinputlayerasinput.(3)AccordingtoallfloorsoftheweightcoefficientsarecalculatedlayersBPneuralnetworkinputandoutput.Outputlayerweight,respectivelyKp、Ki、Kd.AccordingtoincrementalPIDcontrollerformulacanbeoutputu.(4)willserveuasthesupervisionofBPneuralnetworksignal,totheback-propagationalgorithmBP.Onlineaccordingtotheoutputlayer,hiddenlayerofthelearningalgorithmadjusttheweightsoneachfloor,sothattoachieveadaptiveadjustPIDcoefficients.(5)backto(2).3.InthetemperaturecontrolsystemsimulationexperimentIntheindustrialproductionprocess,controltheproductionprocessofallkinds,oftentothetemperatureoftheprocesssuchastimedelaycontroloftheprocess.Setthetemperaturecontrolwaschargedwiththeprocessoftransferfunctionis:)110)(140(3)(sssGSe60Thesimulationresultsasfollows:Figure(1)Figure(2)Figure(1)fortheconventionalPIDcontrol,Fig(2)FortheBPneuralnetworkPIDcontrol.FromthefigurewecanseethatconventionalPIDcontrolarisingfromovershootandtransitiontimethantheBPneuralnetworkPIDcontrolarisingfromovershoot
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Verapamil-d3-racemic-Verapamil-d-sub-3-sub-生命科学试剂-MCE
- 会务安全考试试题及答案
- 仓储主管招聘试题及答案
- 公路公司考试题库及答案
- 2025年农村电商农产品上行模式创新与品牌形象塑造效果评估报告
- 2025年农村电商服务站农村电商与农村金融服务创新策略创新报告
- 制样工考试题库及答案
- 2025年农产品质量安全追溯体系构建与农产品质量安全追溯信息服务平台开发
- 仪表专业安全试题及答案
- 2019三基考试题库及答案
- 万科物业新员工入职考试卷附答案
- 幼儿园大班班本课程《再见幼儿园》
- 2024年甘肃省国际物流有限公司招聘笔试参考题库含答案解析
- 妇科急症的处理与应急预案
- 钢筋挂篮计算书
- 集团分权管理手册
- 信息系统运维服务项目归档资料清单
- 辽宁省义务教育课程各科目安排及占九年总课时比例、各科目安排样表(供参考使用)
- 慢性呼吸疾病肺康复护理专家共识课件
- 乌兰杰的蒙古族音乐史研究-评乌兰杰的《蒙古族音乐史》
- 年产8万吨煅烧铝矾土熟料生产线项目环评影响报告
评论
0/150
提交评论