全文预览已结束
付费下载
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ExplorationAndSimulationofNeuralNetworkPIDInTemperatureControlSystemAbstract:ThispaperpresentsanewkindofintelligencePIDcontrolmethodonBPneuralnetworkandsomeofbasicconceptsaboutBPneuralnetwork.NeuralnetworkintelligencePIDcontrollerhasmanyadvancedpropertiescomparedwithtraditionalPIDcontroller.TheBPneuralnetworkPIDcontrolmethodisappliedtotemperaturecontrolsysteminindustryfield.Thesimulationresultsshowthatthecontrolmethodhashighcontrolaccuracy,strongadaptationandexcellentcontrolresults.Keywords:Neuralnetwork,PIDcontroller,Temperaturecontrolsystem1ForewordInindustrialprocesscontrol,PIDcontrolisabasiccontrolmethod,itsrobustness,simplestructure,easytoimplement,buttheconventionalPIDcontrolalsohasitsowndisadvantage,becausetheparametersofconventionalPIDcontrollerisbasedonbeingmathematicalmodelofcontrolledobjectidentified,whenthemathematicalmodeloftheobjectarechanging,non-lineartime,PIDparametersisnoteasyinaccordancewithitsactualsituationandmakeadjustments,theimpactofthequalitycontrolsothatthecontrolofthequalitycontrolsystemdecline.Especiallyinthepuretime-delaycharacteristicswiththeindustrialprocess,theconventionalPIDcontrolmoredifficulttomeettherequirementsofthecontrolaccuracy.Becauseofneuralnetworkswithself-organization,self-learning,adaptivecapacity,Inthispaper,basedonBPneuralnetworkPIDcontroller,sothatartificialneuralnetworkPIDcontrolwiththetraditionalcombinationofeachotherandjointlyimprovequalitycontrolandtothemethodinthetemperaturecontrolsystemusingthesimulationlanguageMatlabapplication.2BPneuralnetworkmodelandalgorithmconstitute2.1BPneuralnetworkmodelconstituteBPneuralnetworklearningprocessconstitutedmainlybytwostages:Thefirstphase(forwardpropagation),theinputsignalthroughtheinputlayer,hiddenlayerafterlayer-by-layertreatment,intheoutputlayeriscalculatedforeachneurontheactualoutputvalue.Thesecondstage(theprocessoferrorback-propagation),ifnotintheoutputlayerthedesiredoutputvalue,theactuallayer-by-layerrecursiveoutputanddesiredoutputofthemargin,andtherighttoadjustthebasisofthiserrorfactor.2.2TheneuralnetworkPIDcontrollerstructureandalgorithmInthetraditionalPIDcontrol,classicalincrementalPIDcontrolforms:u(k)=u(k-1)+pe(k)-e(k-1)+ie(k)+de(k)-2e(k-1)+e(k-2)Kp:proportionalcoefficienti=iop:Integralcoefficientodpd:DifferentialcoefficientSetupBPneuralnetworkPIDcontrollerstructure:r(k)e(k)u(k)y(k)+_y(k)Adaptiveinordertoachievedip,ofthepurpose,theoutputlayerforthethreeneurons,correspondingtodip,.Inputlayer,hiddenlayerneurons,thenumberofchargedobjectsinaccordancewiththecomplexityoffixed.Hiddenlayeractivationfunctionusedforthepositiveandnegativesymmetricalsigmoidfunction:xxxxeeeexxf)tanh()(Outputlayeractivationfunctionoftheuseofnon-negativesigmoidfunction:xxxeeexxg2)tanh(1)(Weassumethato31,o32,o33istheoutputofoutputlayer,whichcorrespondtop,i,d.Wetaketheperformanceindexfunctionasfollows:2)1()1(21kykrJWhentheactualoutputandthedeviationbetweenthedesiredoutput,thentheerrorback-propagation.Reversethespreadofthesubstanceisbyadjustingtheweightssothatthesmallestdeviation,itcanusethesteepestdescentmethod,errorfunctionbyanegativegradientdirectiontoalllevelsofneuronweightstoadjustoramend.Thenhave:NNPIDNNPlantNNArithmetic)1()3(kwli=-)()3()3(kwwJlili:Learningrate:MomentumofAvailablebythechainrule:)3(liwJ=)3()3()3()3()3()()()()()1()1(lillllwknetknetOOkukukykyJ=-e(k+1)3()3()3()3()3()()()()()1(lillllwknetknetOOkukukyOne:l=1,2,3SoBPneuralnetworkcanbetheoutputlayerweightsofthecalculationformula:)()()1()3()2()3()3(kwkOkwliilliOfwhich:)(*)()(*)()1(sgn()1()3(,)3()3(knetgkOkukukykelllBecauseofthePIDcontrol)()1(kukyalgorithminnormalcircumstancesareunknown,canbeusedtoreplacefunctionsymbols)()1(sgnkuky,andthroughadjustmentstocorrecterrors.Empathycanbehiddenlayerweightcoefficientcalculationformula:)()()2()1()2()2(kwkOwijjiijOfwhich:)()()3(31)3()2()2(kwknetflillii,Intheabovevarioustypes,theScorner(1),(2),(3)express,respectively,inputlayer,hiddenlayer,outputlayer,l:Thenumberofoutputlayerneuronsi:Thenumberofhiddenlayerneuronsj:Thenumberofinputlayerneurons)(1)(xgxgg2/)(12xffBasedontheabovecanbeBPneuralnetworkcontrolalgorithms:(1)determinetheneuralnetworkarchitecture,initializedweightsoneachfloor.Controlthevolumeofoutput,errorchecktheinitialvalue0.(2)ofthesamplingsystemhasbeen)(kr、)(ky.Calculatedbytheerror)()()(kykrke.AndundertheincrementalPIDalgorithmtotheerrorcomponentinputlayerasinput.(3)AccordingtoallfloorsoftheweightcoefficientsarecalculatedlayersBPneuralnetworkinputandoutput.Outputlayerweight,respectivelyKp、Ki、Kd.AccordingtoincrementalPIDcontrollerformulacanbeoutputu.(4)willserveuasthesupervisionofBPneuralnetworksignal,totheback-propagationalgorithmBP.Onlineaccordingtotheoutputlayer,hiddenlayerofthelearningalgorithmadjusttheweightsoneachfloor,sothattoachieveadaptiveadjustPIDcoefficients.(5)backto(2).3.InthetemperaturecontrolsystemsimulationexperimentIntheindustrialproductionprocess,controltheproductionprocessofallkinds,oftentothetemperatureoftheprocesssuchastimedelaycontroloftheprocess.Setthetemperaturecontrolwaschargedwiththeprocessoftransferfunctionis:)110)(140(3)(sssGSe60Thesimulationresultsasfollows:Figure(1)Figure(2)Figure(1)fortheconventionalPIDcontrol,Fig(2)FortheBPneuralnetworkPIDcontrol.FromthefigurewecanseethatconventionalPIDcontrolarisingfromovershootandtransitiontimethantheBPneuralnetworkPIDcontrolarisingfromovershoot
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 北京市海淀区学府幼儿园招聘备考题库及参考答案详解一套
- 2026福建福州墨尔本理工职业学院招聘备考题库及答案详解1套
- 公共用品换洗消毒制度
- 2025年温州市工人业余大学马克思主义基本原理概论期末考试模拟题附答案解析(必刷)
- 2025年西南科技大学城市学院马克思主义基本原理概论期末考试模拟题含答案解析(必刷)
- 2025年湖南现代物流职业技术学院马克思主义基本原理概论期末考试模拟题含答案解析(夺冠)
- 2025年石台县招教考试备考题库含答案解析(必刷)
- 2025年西昌医学高等专科学校马克思主义基本原理概论期末考试模拟题附答案解析
- 2025年西藏藏医药大学马克思主义基本原理概论期末考试模拟题带答案解析(夺冠)
- 2025年越西县幼儿园教师招教考试备考题库附答案解析
- 感术行动培训课件
- 建筑工程生产管理培训
- 新人教版高中数学必修第二册-第八章 立体几何初步 章末复习【课件】
- 仓库物料效期管理制度
- 卧床老人口腔护理规范
- GB/T 157-2025产品几何技术规范(GPS)圆锥的锥度与锥角系列
- T/CCT 017-2024中低温煤焦油
- 电子公司生产部年终工作总结
- ISO27001:2022信息安全管理体系全套文件+表单
- 对招标文件及合同条款的认同声明
- 2024大型企业司库体系建设白皮书
评论
0/150
提交评论