外文文献加中文翻译-基于单片机的超声波测距系统的设计_第1页
外文文献加中文翻译-基于单片机的超声波测距系统的设计_第2页
外文文献加中文翻译-基于单片机的超声波测距系统的设计_第3页
外文文献加中文翻译-基于单片机的超声波测距系统的设计_第4页
外文文献加中文翻译-基于单片机的超声波测距系统的设计_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

ULTASONICRANGINGINAIRGERUDASHEVSKIANDAAGORBATOVUDC534,3219531710837ONEOFTHEMOSTIMPORTANTPROBLEMSININSTRUMENTATIONTECHNOLOGYISTHEREMOTE,CONTACTLESSMEASUREMENTOFDISTANCESINTHEORDEROF02TO10MINAIRSUCHAPROBLEMOCCURS,FORINSTANCE,WHENMEASURINGTHERELATIVETHREEDIMENSIONALPOSITIONOFSEPARATEMACHINEMEMBERSORSTRUCTURALUNITSINTERESTINGPOSSIBILITIESFORITSSOLUTIONAREOPENEDUPBYUTILIZINGULTRASONICVIBRATIONSASANINFORMATIONCARRIERTHEPHYSICALPROPERTIESOFAIR,INWHICHTHEMEASUREMENTSAREMADE,PERMITVIBRATIONSTOBEEMPLOYEDATFREQUENCIESUPTO500KHZFORDISTANCESUPTO05MBETWEENAMEMBERANDTHETRANSDUCER,ORUPTO60KHZWHENRANGINGONOBSTACLESLOCATEDATDISTANCESUPTO10MTHEPROBLEMOFMEASURINGDISTANCESINAIRISSOMEWHATDIFFERENTFROMOTHERPROBLEMSINTHEAPPLICATIONOFULTRASOUNDALTHOUGHTHEPOSSIBILITYOFUSINGACOUSTICRANGINGFORTHISPURPOSEHASBEENKNOWNFORALONGTIME,ANDATFIRSTGLANCEAPPEARSVERYSIMPLE,NEVERTHELESSATTHEPRESENTTIMETHEREAREONLYASMALLNUMBEROFDEVELOPMENTSUSINGTHISMETHODTHATARESUITABLEFORPRACTICALPURPOSESTHEMAINDIFFICULTYHEREISINPROVIDINGARELIABLEACOUSTICTHREEDIMENSIONALCONTACTWITHTHETESTOBJECTDURINGSEVERECHANGESINTHEAIRSCHARACTERISTICPRACTICALLYALLACOUSTICARRANGEMENTSPRESENTLYKNOWNFORCHECKINGDISTANCESUSEAMETHODOFMEASURINGTHEPROPAGATIONTIMEFORCERTAININFORMATIONSAMPLESFROMTHERADIATORTOTHEREFLECTINGMEMBERANDBACKTHEUNMODULATEDACOUSTICULTRASONICVIBRATIONSRADIATEDBYATRANSDUCERARENOTINTHEMSELVESASOURCEOFINFORMATIONINORDERTOTRANSMITSOMEINFORMATIONALCOMMUNICATIONTHATCANTHENBESELECTEDATTHERECEIVINGENDAFTERREFLECTIONFROMTHETESTMEMBER,THERADIATEDVIBRATIONSMUSTBEMODULATEDINTHISCASETHEULTRASONICVIBRATIONSARETHECARRIEROFTHEINFORMATIONWHICHLIESINTHEMODULATIONSIGNAL,IE,THEYARETHEMEANSFORESTABLISHINGTHESPATIALCONTACTBETWEENTHEMEASURINGINSTRUMENTANDTHEOBJECTBEINGMEASUREDTHISCONCLUSION,HOWEVER,DOESNOTMEANTHATTHEANALYSISANDSELECTIONOF241DLTGEPRADPARAMETERSFORTHECARRIERVIBRATIONSISOFMINORIMPORTANCEONTHECONTRARY,THEFREQUENCYOFTHECARRIERVIBRATIONSISLINKEDINAVERYCLOSEMANNERWITHTHECODINGMETHODFORTHEINFORMATIONALCOMMUNICATION,WITHTHEPASSBANDOFTHERECEIVINGANDRADIATINGELEMENTSINTHEAPPARATUS,WITHTHESPATIALCHARACTERISTICSOFTHEULTRASONICCOMMUNICATIONCHANNEL,ANDWITHTHEMEASURINGACCURACYLETUSDWELLONTHEQUESTIONSOFGENERALIMPORTANCEFORULTRASONICRANGINGINAIR,NAMELYONTHECHOICEOFACARRIERFREQUENCYANDTHEAMOUNTOFACOUSTICPOWERRECEIVEDANANALYSISSHOWSTHATWITHCONICALDIRECTIVITYDIAGRAMSFORTHERADIATORANDRECEIVER,ANDASSUMINGTHATTHEDISTANCEBETWEENRADIATORANDRECEIVERISSUBSTANTIALLYSMALLERTHANTHEDISTANCETOTHEOBSTACLE,THEAMOUNTOFACOUSTICPOWERARRIVINGATTHERECEIVINGAREAPRFORTHECASEOFREFLECTIONFROMANIDEALPLANESURFACELOCATEDATRIGHTANGLESTOTHEACOUSTICAXISOFTHETRANSDUCERCOMESTOWHEREPRADISTHEAMOUNTOFACOUSTICPOWERRADIATED,BISTHEABSORPTIONCOEFFICIENTFORAPLANEWAVEINTHEMEDIUM,LISTHEDISTANCEBETWEENTHEELECTROACOUSTICTRANSDUCERANDTHETESTMEMBER,DISTHEDIAMETEROFTHERADIATORRECEIVER,ASSUMINGTHEYAREEQUAL,ANDCISTHEANGLEOFTHEDIRECTIVITYDIAGRAMFORTHEELECTROACOUSTICTRANSDUCERINTHERADIATORSIN21DJWBOTHINEQ1ANDBELOW,THEABSORPTIONCOEFFICIENTISDEPENDENTONTHEAMPLITUDEANDNOTONTHEINTENSITYASINSOMEWORKS1,ANDTHEREFOREWETHINKITNECESSARYTOSTRESSTHISDIFFERENCEINTHEVARIOUSPROBLEMSOFSOUNDRANGINGONTHETESTMEMBERSOFMACHINESANDSTRUCTURES,THERELATIONSHIPBETWEENTHESIGNALATTENUATIONSDUETOTHEABSORPTIONOFAPLANEWAVEANDDUETOTHEGEOMETRICALPROPERTIESOFTHESOUNDBEAMARE,ASARULE,QUITEDIFFERENTITMUSTBEPOINTEDOUTTHATTHECHOICEOFTHEGEOMETRICALPARAMETERSFORTHEBEAMINSPECIFICPRACTICALCASESISDICTATEDBYTHESHAPEOFTHEREFLECTINGSURFACEANDITSSPATIALDISTORTIONRELATIVETOSOMEAVERAGEPOSITIONLETUSCONSIDERINMOREDETAILTHERELATIONSHIPBETWEENTHEGEOMETRICANDTHEPOWERPARAMETERSOFACOUSTICBEAMSFORTHEMOSTCOMMONCASESOFRANGINGONPLANEANDCYLINDRICALSTRUCTURALMEMBERSITISWELLKNOWNTHATTHEDIRECTIONALCHARACTERISTICWOFACIRCULARPISTONVIBRATINGINANINFINITEBAFFLEISAFUNCTIONOFTHERATIOOFTHEPISTONSDIAMETERTOTHEWAVELENGTHD/ASFOUNDFROMTHEFOLLOWINGEXPRESSION2WHEREJLISABESSELFUNCTIONOFTHEFIRSTORDERANDISTHEANGLEBETWEENANORMALTOTHEPISTONANDALINEPROJECTEDFROMTHECENTEROFTHEPISTONTOTHEPOINTOFOBSERVATIONRADIATIONFROMEQ2ITISREADILYFOUNDTHATATWOTOONEREDUCTIONINTHESENSITIVITYOFARADIATORWITHRESPECTTOSOUNDPRESSUREWILLOCCURATTHEANGLE(3)FORANGLES20EQ3CANBESIMPLIFIEDTO(4)D760RCSI50FDC7605WHERECISTHEVELOCITYOFSOUNDINTHEMEDIMAAANDFISTHEFREQUENCYOFTHERADIATEDVIBRATIONSITFOLLOWSFROMEQ4THATWHENRADIATINGINTOAIRWHEREC330M/SEC,THENECESSARYDIAMETEROFTHERADIATORFORASPEDFIEDANGLEOFTHEDIRECTIVITYDIAGRAMATTHE05LEVELOFPRESSURETAKENWITHRESPECTTOTHEAXISCANBEFOUNDTOBE(5)WHEREDISINCM,FISINKHZ,ANDISINDEGREESOFANGLECURVESARESHOWNINFIG1PLOTTEDFROMEQ5FORSIXANGLESOFARADIATORSDIRECTIVITYDIAGRAMTHEDIRECTIVITYDIAGRMNEEDEDFORARADIATORISDICTATEDBYTHEMAXIMUMDISTANCETOBEMEASUREDANDBYTHESPATIALDISPOSITIONOFTHETESTMEMBERRELATIVETOTHEOTHERSTRUCTURALMEMBERSINORDERTOAVOIDTHEINCIDENCEOFSIGNALSREFLECTEDFROMADJACENTMEMBERSONTOTHEACOUSTICRECEIVER,ITISNECESSARYTOPROVIDEASMALLANGLEOFDIVERGENCEFORTHESOUNDBEAMAND,ASFARASPOSSIBLE,ASMALLDIAMETERRADIATORTHESETWOREQUIREMENTSAREMUTUALLYINCONSISTENTSINCEFORAGIVENRADIATIONFREQUENCYAREDUCTIONOFTHEBEAMSDIVERGENCEANGLEREQUIRESANINCREASEDRADIATORDIAMETERINFACT,THEDIAMETEROFTHE“SONICATED“SPOTISCONTROLLEDBYTWOVARIABLES,NAMELYTHEDIAMETEROFTHERADIATORANDTHEDIVERGENCEANGLEOFTHESOUNDBEAMINTHEGENERALCASETHEMINIMUMDIAMETEROFTHE“SONICATED“SPOTDMINONAPLANESURFACENORMALLYDISPOSEDTOTHERADIATORSAXISISGIVENBY(6)WHERELISTHELEASTDISTANCETOTHETESTSURFACETHESPECIFIEDVALUEOFDMINCORRESPONDSTOARADIATORWITHADIAMETER(7)ASSEENFROMEQS,6AND7,THEMINIMUMDIAMETEROFTHE“SONIEATED“SPOTATTHEMAXIMUMREQUIREDDISTANCECANNOTBELESSTHANTWORADIATORDIAMETERSNATURALLY,WITHSHORTERDISTANCESTOTHEOBSTACLETHESIZEOFTHE“SONICATED“SURFACEISLESSLETUSCONSIDERTHECASEOFSOUNDRANGINGONACYLINDRICALLYSHAPEDOBJECTOFRADIUSRTHEPROBLEMISTOMEASURETHEDISTANCEFROMTHEELECTROACOUSTICTRANSDUCERTOTHESIDESURFACEOFTHECYLINDERWITHITSVARIOUSPOSSIBLEDISPLACEMENTSFD140FCLD51FCD6MINMINAXRCSILRYALONGTHEXANDYAXESTHENECESSARYANGLEOFTHERADIATORSDIRECTIVITYDIAGRAMISGIVENINTHISCASEBYTHEEXPRESSION(8)WHEREISTHEVALUEOFTHEANGLEFORTHEDIRECTIVITYDIAGRAM,YMAXISTHEMAXIMUMDISPLACEMENTOFTHECYLINDERSCENTERFROMTHEACOUSTICAXIS,ANDLMINISTHEMINIMUMDISTANCEFROMTHECENTEROFTHEELECTROACOUSTICTRANSDUCERTOTHEREFLECTINGSURFACEMEASUREDALONGTHESTRAIGHTLINECONNECTINGTHECENTEROFTHEMEMBERWITHTHECENTEROFTHETRANSDUCERITISCLEARTHATWHENMEASURINGDISTANCE,THE“RUNNING“TIMEOFTHEINFORMATIONSIGNALISCONTROLLEDBYTHELENGTHOFTHEPATHINADIRECTIONNORMALTOTHECYLINDERSSURFACE,ORINOTHERWORDS,THEMEASUREDISTANCEISALWAYSTHESHORTESTONETHISSTATEMENTISCORRECTFORALLCASESOFSPECULARREFLECTIONOFTHEVIBRATIONSFROMTHETESTSURFACETHESIMULTANEOUSSOLUTIONOFEQS2AND8WHENW05LEADSTOTHEFOLLOWINGEXPRESSION9INTHEPARTICULARCASEWHERETHESOUNDRANGINGTAKESPLACEINAIRHAVINGC330M/SEC,ANDONTHEASSTUNPTIONTHATLMINR,THENECESSARYDIAMETEROFAUNIDIRECTIONALPISTONRADIATORDCANBEFOUNDFROMTHEFOMULA10WHEREDISINCMANDFISINKHZCURVESARESHOWNINFIG2FORDETERMININGTHENECESSARYDIAMETEROFTHERADIATORASAFUNCTIONOFTHERATIOOFTHECYLINDERSRADIUSTOTHEMAXIMUMDISPLACEMENTFROMTHEAXISFORFOURRADIATIONFREQUENCIESALSOSHOWNINTHISFIGUREISTHEDIRECTIVITYDIAGRAMANGLEASAFUNCTIONOFRANDYRNAXFORFOURRATIOSOFMINIMUMDISTANCETORADIUSTHEULTRASONICABSORPTIONINAIRISTHESECONDFACTORINDETERMININGTHERESOLUTIONOFULTRASONICRANGINGDEVICESANDTHEIRRANGEOFACTIONTHERESULTSOFPHYSICALINVESTIGATIONSCONCERNINGTHEMEASUREMENTOFULTRASONICVIBRATIONSAIRAREGIVENIN13UPUNTILNOWTHEREHASBEENNOUNAMBIGUOUSEXPLANATIONOFTHEDISCREPANCYBETWEENTHETHEORETICALANDEXPERIMENTALABSORPTIONRESULTSFORULTRASONICVIBRATIONSINAIRTHUS,FORFREQUENCIESINTHEORDEROF50TO60KHZATATEMPERATUREOF25OCANDMAXIN760YRMAX25FYRARELATIVEHUMIDITYOF37THEENERGYABSORPTIONCOEFFICIENTFORAPLANEWAVEISABOUT25DB/MWHILETHETHEORETICALVALUEIS03DB/MTHEABSORPTIONCOEFFICIENTBASAFUNCTIONOFFREQUENCYFORATEMPERATUREOF25OCANDAHUMIDITYOF37ACCORDINGTOTHEDATAIN2CANBEDESCRIBEDBYTABLE1THEABSORPTIONCOEFFICIENTDEPENDSONTHERELATIVEHUMIDITYTHUS,FORFREQUENCIESINTHEORDEROF10TO20KHZTHEHIGHESTVALUEOFTHEABSORPTIONCOEFFICIENTOCCURSAT20HUMIDITY3,ANDAT40HUMIDITYTHEABSORPTIONISREDUCEDBYABOUTTWOTOONEFORFREQUENCIESINTHEORDEROF60KHZTHEMAXIMUMABSORPTIONOCCURSAT307OHUMIDITY,DROPPINGWHENITISINCREASEDTO98ORLOWEREDTO10BYAFACTOROFAPPROXIMATELYFOURTOONETHEAIRTEMPERATUREALSOHASANAPPRECIABLEEFFECTONTHEULTRASONICABSORPTION1WHENTHETEMPERATUREOFTHEMEDIUMISINCREASEDFROM10TO30,THEABSORPTIONFORFREQUENCIESBETWEEN30AND50KHZINCREASESBYABOUTTHREETOONETAKINGALLTHEFACTORSNOTEDABOVEINTOACCOUNTWEARRIVEATTHEFOLLOWINGAPPROXIMATEVALUESFORTHEABSORPTIONCOEFFICIENTATAFREQUENCYOF60KHZ/3MIN015M1ANDMAX051ATAFREQUENCYOF200KHZ/MIN06M1ANDBMAX2M1THERELATIONSHIPSUNDERCONSIDERATIONARESHOWNGRAPHICALLYINFIG3INTHEUPPERPARTOFTHEDIAGRAMCURVESOFGFLAREPLOTTEDFORFIVEVALUESOFTHETOTALANGLEINTHERADIATORSDIRECTIVITYDIAGRAM,WHERE(11)THEVALUESFORTHEMINIMUMMINANDRNAXILNUMMAX“TRANSMITTANCE“COEFFICIENTSWEREOBTAINEDINTHEABSENCEOFAEROSOLSANDRAINTHEIRDIFFERENCEISTHERESULTOFTHEPOSSIBLEVARIATIONSINTEMPERATUREOVERTHERANGEFROM30TO50ANDINRELATIVEHMNIDITYOVERTHERANGEFROM10TO98THEOVERALLVALUEOFTHE“TRANSMITTANCE“ISOBTAINEDBYMULTIPLYINGTHEVALUESOFGAND0FORGIVENVALUESOFL,F,ANDDLITERATURECITED1LBERGMAN,ULTRASONICSRUSSIANTRANSLATION,IZDINOSTRLIT,MOSCOW19572VAKRASILNIKOV,SONICANDULTRASONICWAVESINRUSSIAN,FIZMATGI2231FDLCZ,MOSCOW19603MMOKHTARANDERICHARDSON,PROCEEDINGSOFTHEROYALSOCIETY,1841945在空气中超声测距GERUDASHEVSKIANDAAGORBATOVUDC534,3219531710837在仪器技术中远程是最重要的一个问题。在空气中,从02米至10米非接触式测量距离时,涉及到了这个问题,例如,在测量时个别机件或结构单位的相对三维位置。有趣的是,是利用超声振动作为信息运输工具,开启了解决办法的可能性在空气这个自然道具中,进行测量的是雇用成员和传感器之间距离05米的时候,允许振动频率高达500千赫,或当与障碍物之间修正距离延伸达10米时候,振动频率高达60千赫兹。应用超声波在空气中测量距离不同于其他的问题。虽然能否利用声波修正测距的可行性已经研究了很长一段时间,乍一看似乎很简单,但是目前只有为数不多的新发明使用这种适合实际目的方法,主要困难是在有严重特有变化的空气中提供一个可靠试验对象去接触三维声波。几乎所有的目前已知用来校验距离使用的,都是为了某些来自用来反射成员和后面的散热器信息样本,测量传播时间解决声音的办法。该未解调的声(超声)振动由传感器辐射的,本身并不是一个信息来源在接收端,来自测试会员反射后,为了传递一些情报信息,因而被选定后,辐射振动一定会被调制。在这种情况下,超声波振动是在于调制信号的信息的承运人,即他们就是在测量仪器和测量稳定的对象之间建立了空间三维接触的手段。这一结论,但是,并不意味着分析和选择的参数承运人振动重要性小正相反,承运人振动频率与信息沟通编码方法,与接收通频带和仪器中的辐射元素,与超声波空间特有的沟通渠道,以及测量精度是具有非常密切的联系方式。让我们谈具有普遍意义的空气中超声波测距问题,即载波频率和的被普遍认为标准的声音数额的选择。(1)在PRAD辐射声功率,B是平面波在介质中吸收系数为,L是声电传感器和测试箱之间的距离,D是散热器(接收)的直径,C是的电声换能器的散热器方向性图的角度。241DLTGEPRAD在均衡器(1)及以下,和作品1一样,吸收系数依赖于振幅和而不是强度,因此,我们认为有必要强调这种差异。图1图2SIN21DJW图3在声音的各种问题上,包括成员测试设备和结构的关系,由于信号衰减吸收的平面和适当的几何性质的声束是,作为一项规则,一定是相差甚远的需要指出的是,选择的实际情况中光束具体的几何参数,是基于形状的反射面和空间的一些失真相对平均排布。让我们考虑一下更详细的几何关系和声束的动力参数这个最常见包括平面和圆柱结构的成员情况。众所周知,定向特性瓦的一个圆形活塞振动无限挡板是一个活塞比例函数,D/为下列表达式基础(2)从均衡器(2)中很容易发现,在减少两到一个敏感性散热器方面,声压级角度将会引起注意。(3)表1F0KHZ102030405060801001502003005000DB/M05071215226354691640对角可以简化为20EQ(3)(4)其中C是中期声速,F是辐射震动的频率它遵循均衡器(4),当辐射到空中,其中C300米/秒,在05级的D760ARCSIN50FDC7605压力面,散热器为采取的轴的直径用于指定角度的方向性图上是必要的(5)其中D是厘米,KHZ是千赫,是度角。在图1中显示的曲线图是均衡器(5)中6个角度散热器的方向性图。事实上,直径的“超声波降解标本”现场控制的两个变量,即直径的散热器和发散角的声音束一般情况下,最小直径的“超声波降解标本”在现场飞机表面处理,通常倾向于散热器的轴心。(6)L是测试表面最小的距离。对应的散热器直径(7)(7)作为从均衡器(6)及(7),“声振”现场最小直径,最高要求散热器直径距离不得少于2自然的,以短距离的障碍的大小,“声振“表面的更少。其中D是厘米,KHZ的在千赫,是度角让我们考虑在半径为R的中声波测距的情况。问题是在X和Y中坐标轴上衡

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论