文献及翻译-均质各向异性裂隙岩体的破坏特性_第1页
文献及翻译-均质各向异性裂隙岩体的破坏特性_第2页
文献及翻译-均质各向异性裂隙岩体的破坏特性_第3页
文献及翻译-均质各向异性裂隙岩体的破坏特性_第4页
文献及翻译-均质各向异性裂隙岩体的破坏特性_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

FAILUREPROPERTIESOFFRACTUREDROCKMASSESASANISOTROPICHOMOGENIZEDMEDIAINTRODUCTIONITISCOMMONLYACKNOWLEDGEDTHATROCKMASSESALWAYSDISPLAYDISCONTINUOUSSURFACESOFVARIOUSSIZESANDORIENTATIONS,USUALLYREFERREDTOASFRACTURESORJOINTSSINCETHELATTERHAVEMUCHPOORERMECHANICALCHARACTERISTICSTHANTHEROCKMATERIAL,THEYPLAYADECISIVEROLEINTHEOVERALLBEHAVIOROFROCKSTRUCTURES,WHOSEDEFORMATIONASWELLASFAILUREPATTERNSAREMAINLYGOVERNEDBYTHOSEOFTHEJOINTSITFOLLOWSTHAT,FROMAGEOMECHANICALENGINEERINGSTANDPOINT,DESIGNMETHODSOFSTRUCTURESINVOLVINGJOINTEDROCKMASSES,MUSTABSOLUTELYACCOUNTFORSUCHWEAKNESSSURFACESINTHEIRANALYSISTHEMOSTSTRAIGHTFORWARDWAYOFDEALINGWITHTHISSITUATIONISTOTREATTHEJOINTEDROCKMASSASANASSEMBLAGEOFPIECESOFINTACTROCKMATERIALINMUTUALINTERACTIONTHROUGHTHESEPARATINGJOINTINTERFACESMANYDESIGNORIENTEDMETHODSRELATINGTOTHISKINDOFAPPROACHHAVEBEENDEVELOPEDINTHEPASTDECADES,AMONGTHEM,THEWELLKNOWNBLOCKTHEORY,WHICHATTEMPTSTOIDENTIFYPOTENTIALLYUNSTABLELUMPSOFROCKFROMGEOMETRICALANDKINEMATICALCONSIDERATIONSGOODMANANDSHI1985WARBURTON1987GOODMAN1995ONESHOULDALSOQUOTETHEWIDELYUSEDDISTINCTELEMENTMETHOD,ORIGINATINGFROMTHEWORKSOFCUNDALLANDCOAUTHORSCUNDALLANDSTRACK1979CUNDALL1988,WHICHMAKESUSEOFANEXPLICITNITEDIFFERENCENUMERICALSCHEMEFORCOMPUTINGTHEDISPLACEMENTSOFTHEBLOCKSCONSIDEREDASRIGIDORDEFORMABLEBODIESINTHISCONTEXT,ATTENTIONISPRIMARILYFOCUSEDONTHEFORMULATIONOFREALISTICMODELSFORDESCRIBINGTHEJOINTBEHAVIORSINCETHEPREVIOUSLYMENTIONEDDIRECTAPPROACHISBECOMINGHIGHLYCOMPLEX,ANDTHENNUMERICALLYUNTRACTABLE,ASSOONASAVERYLARGENUMBEROFBLOCKSISINVOLVED,ITSEEMSADVISABLETOLOOKFORALTERNATIVEMETHODSSUCHASTHOSEDERIVEDFROMTHECONCEPTOFHOMOGENIZATIONACTUALLY,SUCHACONCEPTISALREADYPARTIALLYCONVEYEDINANEMPIRICALFASHIONBYTHEFAMOUSHOEKANDBROWNSCRITERIONHOEKANDBROWN1980HOEK1983ITSTEMSFROMTHEINTUITIVEIDEATHATFROMAMACROSCOPICPOINTOFVIEW,AROCKMASSINTERSECTEDBYAREGULARNETWORKOFJOINTSURFACES,MAYBEPERCEIVEDASAHOMOGENEOUSCONTINUUMFURTHERMORE,OWINGTOTHEEXISTENCEOFJOINTPREFERENTIALORIENTATIONS,ONESHOULDEXPECTSUCHAHOMOGENIZEDMATERIALTOEXHIBITANISOTROPICPROPERTIESTHEOBJECTIVEOFTHEPRESENTPAPERISTODERIVEARIGOROUSFORMULATIONFORTHEFAILURECRITERIONOFAJOINTEDROCKMASSASAHOMOGENIZEDMEDIUM,FROMTHEKNOWLEDGEOFTHEJOINTSANDROCKMATERIALRESPECTIVECRITERIAINTHEPARTICULARSITUATIONWHERETWOMUTUALLYORTHOGONALJOINTSETSARECONSIDERED,ACLOSEDFORMEXPRESSIONISOBTAINED,GIVINGCLEAREVIDENCEOFTHERELATEDSTRENGTHANISOTROPYACOMPARISONISPERFORMEDONANILLUSTRATIVEEXAMPLEBETWEENTHERESULTSPRODUCEDBYTHEHOMOGENIZATIONMETHOD,MAKINGUSEOFTHEPREVIOUSLYDETERMINEDCRITERION,ANDTHOSEOBTAINEDBYMEANSOFACOMPUTERCODEBASEDONTHEDISTINCTELEMENTMETHODITISSHOWNTHAT,WHILEBOTHMETHODSLEADTOALMOSTIDENTICALRESULTSFORADENSELYFRACTUREDROCKMASS,ASIZEORSCALEEFFECTISOBSERVEDINTHECASEOFALIMITEDNUMBEROFJOINTSTHESECONDPARTOFTHEPAPERISTHENDEVOTEDTOPROPOSINGAMETHODWHICHATTEMPTSTOCAPTURESUCHASCALEEFFECT,WHILESTILLTAKINGADVANTAGEOFAHOMOGENIZATIONTECHNIQUETHISISACHIEVEDBYRESORTINGTOAMICROPOLARORCOSSERATCONTINUUMDESCRIPTIONOFTHEFRACTUREDROCKMASS,THROUGHTHEDERIVATIONOFAGENERALIZEDMACROSCOPICFAILURECONDITIONEXPRESSEDINTERMSOFSTRESSESANDCOUPLESTRESSESTHEIMPLEMENTATIONOFTHISMODELISNALLYILLUSTRATEDONASIMPLEEXAMPLE,SHOWINGHOWITMAYACTUALLYACCOUNTFORSUCHASCALEEFFECTPROBLEMSTATEMENTANDPRINCIPLEOFHOMOGENIZATIONAPPROACHTHEPROBLEMUNDERCONSIDERATIONISTHATOFAFOUNDATIONBRIDGEPIERORABUTMENTRESTINGUPONAFRACTUREDBEDROCKFIG1,WHOSEBEARINGCAPACITYNEEDSTOBEEVALUATEDFROMTHEKNOWLEDGEOFTHESTRENGTHCAPACITIESOFTHEROCKMATRIXANDTHEJOINTINTERFACESTHEFAILURECONDITIONOFTHEFORMERWILLBEEXPRESSEDTHROUGHTHECLASSICALMOHRCOULOMBCONDITIONEXPRESSEDBYMEANSOFTHECOHESIONANDTHEFRICTIONANGLENOTETHATTENSILESTRESSESMCMWILLBECOUNTEDPOSITIVETHROUGHOUTTHEPAPERLIKEWISE,THEJOINTSWILLBEMODELEDASPLANEINTERFACESREPRESENTEDBYLINESINTHEGURESPLANETHEIRSTRENGTHPROPERTIESAREDESCRIBEDBYMEANSOFACONDITIONINVOLVINGTHESTRESSVECTOROFCOMPONENTS,ACTINGATANYPOINTOFTHOSEINTERFACESACCORDINGTOTHEYIELDDESIGNORLIMITANALYSISREASONING,THEABOVESTRUCTUREWILLREMAINSAFEUNDERAGIVENVERTICALLOADQFORCEPERUNITLENGTHALONGTHEOZAXIS,IFONECANEXHIBITTHROUGHOUTTHEROCKMASSASTRESSDISTRIBUTIONWHICHSATISESTHEEQUILIBRIUMEQUATIONSALONGWITHTHESTRESSBOUNDARYCONDITIONS,WHILECOMPLYINGWITHTHESTRENGTHREQUIREMENTEXPRESSEDATANYPOINTOFTHESTRUCTURETHISPROBLEMAMOUNTSTOEVALUATINGTHEULTIMATELOADQBEYONDWHICHFAILUREWILLOCCUR,OREQUIVALENTLYWITHINWHICHITSSTABILITYISENSUREDDUETOTHESTRONGHETEROGENEITYOFTHEJOINTEDROCKMASS,INSURMOUNTABLEDIFCULTIESARELIKELYTOARISEWHENTRYINGTOIMPLEMENTTHEABOVEREASONINGDIRECTLYASREGARDS,FORINSTANCE,THECASEWHERETHESTRENGTHPROPERTIESOFTHEJOINTSARECONSIDERABLYLOWERTHANTHOSEOFTHEROCKMATRIX,THEIMPLEMENTATIONOFAKINEMATICAPPROACHWOULDREQUIRETHEUSEOFFAILUREMECHANISMSINVOLVINGVELOCITYJUMPSACROSSTHEJOINTS,SINCETHELATTERWOULDCONSTITUTEPREFERENTIALZONESFORTHEOCCURRENCEOFFAILUREINDEED,SUCHADIRECTAPPROACHWHICHISAPPLIEDINMOSTCLASSICALDESIGNMETHODS,ISBECOMINGRAPIDLYCOMPLEXASTHEDENSITYOFJOINTSINCREASES,THATISASTHETYPICALJOINTSPACINGLISBECOMINGSMALLINCOMPARISONWITHACHARACTERISTICLENGTHOFTHESTRUCTURESUCHASTHEFOUNDATIONWIDTHBINSUCHASITUATION,THEUSEOFANALTERNATIVEAPPROACHBASEDONTHEIDEAOFHOMOGENIZATIONANDRELATEDCONCEPTOFMACROSCOPICEQUIVALENTCONTINUUMFORTHEJOINTEDROCKMASS,MAYBEAPPROPRIATEFORDEALINGWITHSUCHAPROBLEMMOREDETAILSABOUTTHISTHEORY,APPLIEDINTHECONTEXTOFREINFORCEDSOILANDROCKMECHANICS,WILLBEFOUNDINDEBUHANETAL1989DEBUHANANDSALENC,ON1990BERNAUDETAL1995MACROSCOPICFAILURECONDITIONFORJOINTEDROCKMASSTHEFORMULATIONOFTHEMACROSCOPICFAILURECONDITIONOFAJOINTEDROCKMASSMAYBEOBTAINEDFROMTHESOLUTIONOFANAUXILIARYYIELDDESIGNBOUNDARYVALUEPROBLEMATTACHEDTOAUNITREPRESENTATIVECELLOFJOINTEDROCKBEKAERTANDMAGHOUS1996MAGHOUSETAL1998ITWILLNOWBEEXPLICITLYFORMULATEDINTHEPARTICULARSITUATIONOFTWOMUTUALLYORTHOGONALSETSOFJOINTSUNDERPLANESTRAINCONDITIONSREFERRINGTOANORTHONORMALFRAMEOWHOSEAXESAREPLACED21ALONGTHEJOINTSDIRECTIONS,ANDINTRODUCINGTHEFOLLOWINGCHANGEOFSTRESSVARIABLESSUCHAMACROSCOPICFAILURECONDITIONSIMPLYBECOMESWHEREITWILLBEASSUMEDTHATACONVENIENTREPRESENTATIONOFTHEMACROSCOPICCRITERIONISTODRAWTHESTRENGTHENVELOPERELATINGTOANORIENTEDFACETOFTHEHOMOGENIZEDMATERIAL,WHOSEUNITNORMALNIISINCLINEDBYANANGLEAWITHRESPECTTOTHEJOINTDIRECTIONDENOTINGBYANDTHENORMALANDSHEARCOMPONENTSOFTHESTRESSVECTORACTINGUPONSUCHAFACET,ITISPOSSIBLETODETERMINEFORANYVALUEOFATHESETOFADMISSIBLESTRESSES,DEDUCEDFROMCONDITIONS3EXPRESSEDINTERMSOFN,THECORRESPONDINGDOMAINHASBEENDRAWNINFIG2INTHE1212PARTICULARCASEWHEREMTWOCOMMENTSAREWORTHBEINGMADE1THEDECREASEINSTRENGTHOFAROCKMATERIALDUETOTHEPRESENCEOFJOINTSISCLEARLYILLUSTRATEDBYFIG2THEUSUALSTRENGTHENVELOPECORRESPONDINGTOTHEROCKMATRIXFAILURECONDITIONISTRUNCATEDBYTWOORTHOGONALSEMILINESASSOONASCONDITIONISFULLLEDMJH2THEMACROSCOPICANISOTROPYISALSOQUITEAPPARENT,SINCEFORINSTANCETHESTRENGTHENVELOPEDRAWNINFIG2ISDEPENDENTONTHEFACETORIENTATIONATHEUSUALNOTIONOFINTRINSICCURVESHOULDTHEREFOREBEDISCARDED,BUTALSOTHECONCEPTSOFANISOTROPICCOHESIONANDFRICTIONANGLEASTENTATIVELYINTRODUCEDBYJAEGER1960,ORMCLAMOREANDGRAY1967NORCANSUCHANANISOTROPYBEPROPERLYDESCRIBEDBYMEANSOFCRITERIABASEDONANEXTENSIONOFTHECLASSICALMOHRCOULOMBCONDITIONUSINGTHECONCEPTOFANISOTROPYTENSORBOEHLERANDSAWCZUK1977NOVA1980ALLIROTANDBOCHLER1981APPLICATIONTOSTABILITYOFJOINTEDROCKEXCAVATIONTHECLOSEDFORMEXPRESSION3OBTAINEDFORTHEMACROSCOPICFAILURECONDITION,MAKESITTHENPOSSIBLETOPERFORMTHEFAILUREDESIGNOFANYSTRUCTUREBUILTINSUCHAMATERIAL,SUCHASTHEEXCAVATIONSHOWNINFIG3,WHEREHANDDENOTETHEEXCAVATIONHEIGHTANDTHESLOPEANGLE,RESPECTIVELYSINCENOSURCHARGEISAPPLIEDTOTHESTRUCTURE,THESPECICWEIGHTOFTHECONSTITUENTMATERIALWILLOBVIOUSLYCONSTITUTETHESOLELOADINGPARAMETEROFTHESYSTEMASSESSINGTHESTABILITYOFTHISSTRUCTUREWILLAMOUNTTOEVALUATINGTHEMAXIMUMPOSSIBLEHEIGHTHBEYONDWHICHFAILUREWILLOCCURASTANDARDDIMENSIONALANALYSISOFTHISPROBLEMSHOWSTHATTHISCRITICALHEIGHTMAYBEPUTINTHEFORMWHEREJOINTORIENTATIONANDKNONDIMENSIONALFACTORGOVERNINGTHESTABILITYOFTHEEXCAVATIONUPPERBOUNDESTIMATESOFTHISFACTORWILLNOWBEDETERMINEDBYMEANSOFTHEYIELDDESIGNKINEMATICAPPROACH,USINGTWOKINDSOFFAILUREMECHANISMSSHOWNINFIG4ROTATIONALFAILUREMECHANISMFIG4ATHERSTCLASSOFFAILUREMECHANISMSCONSIDEREDINTHEANALYSISISADIRECTTRANSPOSITIONOFTHOSEUSUALLYEMPLOYEDFORHOMOGENEOUSANDISOTROPICSOILORROCKSLOPESINSUCHAMECHANISMAVOLUMEOFHOMOGENIZEDJOINTEDROCKMASSISROTATINGABOUTAPOINTWITHANANGULARVELOCITYTHECURVESEPARATINGTHISVOLUMEFROMTHERESTOFTHESTRUCTUREWHICHISKEPTMOTIONLESSISAVELOCITYJUMPLINESINCEITISANARCOFTHELOGSPIRALOFANGLEANDFOCUSTHEVELOCITYMDISCONTINUITYATANYPOINTOFTHISLINEISINCLINEDATANGLEWMWITHRESPECTTOTHETANGENTATTHESAMEPOINTTHEWORKDONEBYTHEEXTERNALFORCESANDTHEMAXIMUMRESISTINGWORKDEVELOPEDINSUCHAMECHANISMMAYBEWRITTENASSEECHENANDLIU1990MAGHOUSETAL1998WHEREANDDIMENSIONLESSFUNCTIONS,AND1AND2ANGLESEWMESPECIFYINGTHEPOSITIONOFTHECENTEROFROTATIONSINCETHEKINEMATICAPPROACHOFYIELDDESIGNSTATESTHATANECESSARYCONDITIONFORTHESTRUCTURETOBESTABLEWRITESITFOLLOWSFROMEQS5AND6THATTHEBESTUPPERBOUNDESTIMATEDERIVEDFROMTHISRSTCLASSOFMECHANISMISOBTAINEDBYMINIMIZATIONWITHRESPECTTO1AND2WHICHMAYBEDETERMINEDNUMERICALLYPIECEWISERIGIDBLOCKFAILUREMECHANISMFIG4BTHESECONDCLASSOFFAILUREMECHANISMSINVOLVESTWOTRANSLATINGBLOCKSOFHOMOGENIZEDMATERIALITISDENEDBYVEANGULARPARAMETERSINORDERTOAVOIDANYMISINTERPRETATION,ITSHOULDBESPECIEDTHATTHETERMINOLOGYOFBLOCKDOESNOTREFERHERETOTHELUMPSOFROCKMATRIXINTHEINITIALSTRUCTURE,BUTMERELYMEANSTHAT,INTHEFRAMEWORKOFTHEYIELDDESIGNKINEMATICAPPROACH,AWEDGEOFHOMOGENIZEDJOINTEDROCKMASSISGIVENAVIRTUALRIGIDBODYMOTIONTHEIMPLEMENTATIONOFTHEUPPERBOUNDKINEMATICAPPROACH,MAKINGUSEOFOFTHISSECONDCLASSOFFAILUREMECHANISM,LEADSTOTHEFOLLOWINGRESULTSWHEREUREPRESENTSTHENORMOFTHEVELOCITYOFTHELOWERBLOCKHENCE,THEFOLLOWINGUPPERBOUNDESTIMATEFORKRESULTSANDCOMPARISONWITHDIRECTCALCULATIONTHEOPTIMALBOUNDHASBEENCOMPUTEDNUMERICALLYFORTHEFOLLOWINGSETOFPARAMETERSTHERESULTOBTAINEDFROMTHEHOMOGENIZATIONAPPROACHCANTHENBECOMPAREDWITHTHATDERIVEDFROMADIRECTCALCULATION,USINGTHEUDECCOMPUTERSOFTWAREHARTETAL1988SINCETHELATTERCANHANDLESITUATIONSWHERETHEPOSITIONOFEACHINDIVIDUALJOINTISSPECIED,ASERIESOFCALCULATIONSHASBEENPERFORMEDVARYINGTHENUMBERNOFREGULARLYSPACEDJOINTS,INCLINEDATTHESAMEANGLE10WITHTHEHORIZONTAL,ANDINTERSECTINGTHEFACINGOFTHEEXCAVATION,ASSKETCHEDINFIG5THECORRESPONDINGESTIMATESOFTHESTABILITYFACTORHAVEBEENPLOTTEDAGAINSTNINTHESAMEGUREITCANBEOBSERVEDTHATTHESENUMERICALESTIMATESDECREASEWITHTHENUMBEROFINTERSECTINGJOINTSDOWNTOTHEESTIMATEPRODUCEDBYTHEHOMOGENIZATIONAPPROACHTHEOBSERVEDDISCREPANCYBETWEENHOMOGENIZATIONANDDIRECTAPPROACHES,COULDBEREGARDEDASASIZEORSCALEEFFECTWHICHISNOTINCLUDEDINTHECLASSICALHOMOGENIZATIONMODELAPOSSIBLEWAYTOOVERCOMESUCHALIMITATIONOFTHELATTER,WHILESTILLTAKINGADVANTAGEOFTHEHOMOGENIZATIONCONCEPTASACOMPUTATIONALTIMESAVINGALTERNATIVEFORDESIGNPURPOSES,COULDBETORESORTTOADESCRIPTIONOFTHEFRACTUREDROCKMEDIUMASACOSSERATORMICROPOLARCONTINUUM,ASADVOCATEDFORINSTANCEBYBIOT1967BESDO1985ADHIKARYANDDYSKIN1997ANDSULEMANDMULHAUS1997FORSTRATIEDORBLOCKSTRUCTURESTHESECONDPARTOFTHISPAPERISDEVOTEDTOAPPLYINGSUCHAMODELTODESCRIBINGTHEFAILUREPROPERTIESOFJOINTEDROCKMEDIA均质各向异性裂隙岩体的破坏特性概述由于岩体表面的裂隙或节理大小与倾向不同,人们通常把岩体看做是非连续的。尽管裂隙或节理表现出的力学性质要远远低于岩体本身,但是它们在岩体结构性质方面起着重要的作用,岩体本身的变形和破坏模式也主要是由这些节理所决定的。从地质力学工程角度而言,在涉及到节理岩体结构的设计方法中,软弱表面是一个很重要的考虑因素。解决这种问题最简单的方法就是把岩体看作是许多完整岩块的集合,这些岩块之间有很多相交的节理面。这种方法在过去的几十年中被设计者们广泛采用,其中比较著名的是“块体理论”,该理论试图从几何学和运动学的角度用来判别潜在的不稳定岩块(GOODMANMAGHOUS等1998)。现在可以精确地表示平面应变条件下,两组相互正交节理的特殊情况,建立沿节理方向的正交坐标系O21,并引入下列应力变量宏观破坏条件可简化为其中,假定宏观准则的一种简便表示方法是画出均质材料倾向面上的强度包络线,其单位法线N的倾角为节理的方向,分别用N和N表示这个面上的正应力和切应力,用,表示条件(3),推求出一组许可应力N,N,然后求解出倾角。当121M时,相应的区域表示如图2所示,并对此做出两个注解如下1从图2中可以清楚的看出,节理的存在导致了岩体强度的降低。通常当时,强度包络线和岩基破坏条件相一致,其前半部分被两个正交的半条线切MJH去。2宏观各向异性很显著。比如,图2中的强度包络线决定于方位角。应该抛弃固有曲线和各向异性粘聚力与摩擦角的概念,其中后一个概念是由JAEGER(1960)或MCLAMOREGRAY(1967)所引入的。通过莫尔库伦条件进行扩展,利用各向异性张量的方法来描述各向异性也

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论