已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Bebek,BearingloadBendingstressbeamisrate,parameterwiththemostimportantinfluenceondesignofthecrankshaft.Resultsofbearingloadsandwebbendingstressesaretabulated.mustoverallsystemsonparametersofthecrankshaftsystem.Studiesoncrankshaftofinternalcombustionenginesmainlyfo-cusonvibrationandstressanalyses19.Althoughstressanaly-sesofcrankshaftsareavailableinliterature,therearefewstudiesontheeffectofcounterweightconfigurationonmainbear-ingloadsandcrankshaftstresses.Sharpeetal.10studiedbalanc-ingofthecrankshaftofaV-8engineusingarigidcrankshaftmodeltionsarecarriedoutatenginespeedrangeof10002000rpm.Bendingstressesatthecentresofeachwebarealsocalculated.2.EnginespecificationsThespecificationsofin-linesix-cylinderdieselenginearegiveninTable1.The9.0Lenginecrankshafthaseightcounterweightsatcrankwebs1,2,5,6,7,8,11and12.3Dsolidmodelofthecrank-shaftisobtainedusingPro/EngineerandisshowninFig.1.Sche-maticrepresentationofthecrankshaftisgiveninFig.2.Static*Correspondingauthor.Tel.:+902123597534;fax:+902122872456.AdvancesinEngineeringSoftware40(2009)95104ContentslistsavailableE-mailaddress:.tr(Y.Yilmaz).beingthemainpartresponsibleforpowerproduction.Crankshaftsystemmainlyconsistsofpiston,pistonpin,con-nectingrod,crankshaft,torsionalvibration(TV)damperandfly-wheel.Counterweightsareplacedontheoppositesideofeachcranktobalancerotatinginertiaforces.Ingeneral,counterweightsaredesignedforbalancingratesbetween50%and100%.Foracceptablemaximumandaveragemainbearingloads,massofcounterweightsandtheirpositionsareimportant.Maximumandaveragemainbearingloadsofanenginedependoncylinderpres-sure,counterweightmass,enginespeedandothergeometricstudyoneffectofcounterweightconfigurationonmainbearingloadsandcrankshaftstressesisstillneeded.Inthisstudy,counterweightpositionsandmassesofanin-linesix-cylinderdieselenginecrankshaftsystemarestudied.Maxi-mumandaveragemainbearingforcesandcrankshaftbendingstressesarecalculatedfor12-counterweightconfigurationswithazerodegreecounterweightangle,andforeight-counterweightconfigurationswith30C176counterweightanglefor0%,50%and100%counterweightbalancingrates.AnalysesarecarriedoutusingMultibodySystemSimulationProgram,ADAMS/Engine.Simula-1.IntroductionNewinternalcombustionenginespower,goodfueleconomy,smallengineharmlessaspossibletotheenvironment.eachcomponentoftheengineonitsbeinvestigatedindetail.Crankshafttionengineshaveimportantinfluence0965-9978/$-seefrontmatterC2112008ElsevierLtd.Alldoi:10.1016/j.advengsoft.2008.03.009C2112008ElsevierLtd.Allrightsreserved.havehighenginesize,andshouldbeasTherefore,theeffectofperformanceshouldofinternalcombus-engineperformanceandoptimizedcounterweightstominimizemainbearingloads.StanleyandTaraza11obtainedmaximumandaveragemainbearingloadsoffourandsix-cylindersymmetricin-lineenginesusingarigidcrankshaftmodelandestimatedidealcounterweightmassthatresultedinacceptablemaximumbearingload.Rigidcrankshaftmodelsthatareusedincounterweightanalysesdonotconsidertheeffectofcrankshaftflexibilityonmainbearingloadsandcanleadtoconsiderableerrors.Therefore,anextensiveCrankshaftmodelsBalancingrateBothconfigurationsshowthesametrend.TheloadfromgaspressureratherthaninertiaforcesistheAninvestigationoftheeffectofcounterweightloadandcrankshaftbendingstressYasinYilmaz*,GunayAnlasDepartmentofMechanicalEngineering,FacultyofEngineering,BogaziciUniversity,34342articleinfoArticlehistory:Received11February2008Receivedinrevisedform17March2008Accepted24March2008Availableonline6May2008Keywords:CounterweightconfigurationabstractInthisstudy,effectsofcounterweightstressofanin-linesix-cylinderADAMS.Intheanalysis,rigid,rigid,beamand3Dsolidmodelsanalyses.Twelve-counterweightterweightconfigurationswithingrates,areconsidered.ItwithincreasingbalancingAdvancesinEngineeringjournalhomepage:/lorightsreserved.configurationonmainbearingIstanbul,TurkeymassandpositiononmainbearingloadandcrankshaftbendingdieselengineisinvestigatedusingMultibodySystemSimulationProgram,and3Dsolidcrankshaftmodelsareused.Mainbearingloadresultsofarecomparedandbeammodelisusedincounterweightconfigurationconfigurationswithazerodegreecounterweightangleandeight-coun-30C176counterweightangle,eachfor0%,50%and100%counterweightbalanc-foundthatmaximummainbearingloadandwebbendingstressincreaseandaveragemainbearingloaddecreaseswithincreasingbalancingrate.atScienceDirectSoftwarecate/advengsoftunbalanceofeachcrankthrow(withandw/ocounterweights)isdeterminedusingPro/EngineerandisgiveninTable2.Thebalanc-ingsystemdataforthecranktrainaregiveninTable3.3.ModelingofcrankshaftsystemUsingADAMS/Engine,acrankshaftcanbemodeledinfourdif-ferentways:rigidcrankshaft,torsionalflexiblecrankshaft,beamcrankshaftand3Dsolidcrankshaft.Rigidcrankshaftmodelismainlyusedtoobtainfreeforcesandtorques,andforbalancingpurposes.Torsionalflexiblecrankshaftmodelisusedtoinvesti-gatetorsionalvibrationswhereeachthrowismodeledasonerigidpart,andspringsareusedbetweeneachthrowtorepresenttor-sionalstiffness.Beamcrankshaftmodelisusedtorepresentthetorsionalandbendingstiffnessofthecrankshaft.Usingbeammod-elbendingstressesatthewebscanbecalculated12.Table1EnginespecificationsUnit9.0LengineBorediametermm115Strokemm144Axialcylinderdistancemm134PeakfiringpressureMPa19RatedpoweratspeedkW/rpm295/2200Max.torqueatspeedNm/rpm1600/12001700Mainjournal/pindiametermm95/81Firingorder1-5-3-6-2-4Flywheelmasskg47.84Flywheelmomentofinertiakgmm21.57E+9MassofTVdamperringkg4.94MassofTVdamperhousingkg6.86Momentofinertiaoftheringkgmm21.27E+5Momentofinertiaofthehousingkgmm20.56E+5MainBearing#1MainBearing#2MainBearing#3MainBearing#4MainBearing#5MainBearing#6MainBearing#7CounterweightsFig.1.3Dsolidmodelofthecrankshaft.C3,C4,C5,C6C1,C2,C7,C81,63,42,5C1C2C3C4C5C612Fig.2.Eight-counterweightarrangementTable2PropertiesofthecrankthrowsThrow1Throw2Mass(kg)12.509.25CGpositionfromcrankrotationaxis(mm)12.42331.435Staticunbalance(kgmm)155.265290.76796Y.Yilmaz,G.Anlas/AdvancesinEngineeringSoftware40(2009)95104C7C83456ofthe9.0Lenginecrankshaft.Throw3Throw4Throw5Throw612.5012.509.2812.5511.96711.96631.02711.702149.734149.734287.871146.856Elastic3Dsolidmodelofthecrankshaftcanbeobtainedusinganadditionalfiniteelementprogram.Theprocedureislengthyandtimeconsumingandusuallyoneendsupwithdegreesoffree-dominorderofmillions.Tosimplifythefiniteelementmodel,modalsuperpositiontechniqueisused.Theelasticdeformationofthestructureisapproximatedbylinearcombinationofsuitablemodeswhichcanbeshownasfollows:uUq1whereqisthevectorofmodalcoordinatesandUistheshapefunc-tionmatrix.Table3CrankshaftsystemdataCrankradius(mm)72Connectingrodlength(mm)239Massofcompletepiston(kg)3.42Connectingrodreciprocatingmass(kg)0.92Reciprocatingmass(totalpercylinder)(kg)4.32Connectingrodrotatingmass(kg)2.01Y.Yilmaz,G.Anlas/AdvancesinEngineeringAnelasticbodycontainstwotypesofnodes,interfacenodeswhereforcesandboundaryconditionsinteractwiththestructureduringmultibodysystemsimulation(MSS),andinteriornodes.InMSSthepositionoftheelasticbodyiscomputedbysuperposingitsrigidbodymotionandelasticdeformation.InADAMS,thisisperformedusingComponentModeSynthesis”techniquebasedonCraigBamptonmethod13,14.Thecomponentmodescontainstaticanddynamicbehaviorofthestructure.Thesemodesarecon-straintmodeswhicharestaticdeformationshapesobtainedbygivingaunitdisplacementtoeachinterfacedegreeoffreedom(DOF)whilekeepingallotherinterfaceDOFsfixed,andfixedboundarynormalmodeswhicharethesolutionofeigenvalueproblembyfixingtheentireinterfaceDOFs.Themodaltransforma-tionbetweenthephysicalDOFandtheCraigBamptonmodesandtheirmodalcoordinatesisdescribedby15uuBuIC26C27I0UCUNC20C21qCqNC26C272whereuBanduIarecolumnvectorsandrepresentboundaryDOFandinteriorDOF,respectively.I,0areidentityandzeromatrices,respectively.UCisthematrixofphysicaldisplacementsoftheinte-riorDOFintheconstraintmodes.UNisthematrixofphysicaldis-Fig.3.Modelofthecrankshaftsystem.placementsoftheinteriorDOFinthenormalmodes.qCisthecolumnvectorofmodalcoordinatesoftheconstraintmodes.qNisthecolumnvectorofmodalcoordinatesofthefixedboundarynor-malmodes.Toobtaindecoupledsetofmodes,constrainedmodesandnormalmodesareorthogonalized.Elastic3Dsolidcrankshaftmodelofthe9.0LengineisobtainedinMSC.Nastranusingmodalsuperpositiontechnique.First,3Dso-lidmodelofthecrankshaftthatisshowninFig.1isexportedtoMSC.Nastranandfiniteelementmodelofthecrankshaft,whichischaracterizedbyapproximately300,000ten-nodetetrahedralele-mentsand500,000nodesisobtained.Themodalmodelofthecrankshaftisdevelopedwith32boundaryDOFsassociatedwith16interfacenodes.Constrainedmodesobtainedfromstaticanaly-siscorrespondtotheseDOFs.Flexiblecrankshaftmodelisobtainedthroughmodalsynthesisconsideringthefirst40fixedboundarynormalmodes.Thereforeflexiblecrankshaftmodelischaracter-izedbyatotalof72DOFs.ThismodelisexportedtoADAMS/En-gineandcrankshaftsystemmodelthatisshowninFig.3isobtained.3DfiniteelementmodelisrunwithADAMS.4.ForcesactingoncrankshaftsystemandbalancingForcesinaninternalcombustionenginemaybedividedintoinertiaforcesandpressureforces.Inertiaforcesarefurtherdividedintotwomaincategories:rotatinginertiaforcesandreciprocatinginertiaforces.Therotatinginertiaforceforeachcylindercanbewrittenasshownbelow:FiR;jmRC1rRC1x2C1C0sinhjjcoshjk3wheremRistherotatingmassthatconsistsofthemassofcrankpin,crankwebsandmassofrotatingportionoftheconnectingrod;rRisthedistancefromthecrankshaftcentreofrotationtothecentreofgravityoftherotatingmass,xisangularvelocityofthecrankshaft,andhjistheangularpositionofeachcrankthrowwithrespecttoTopDeadCentre”(TDC).Iftherearetwocounterweightspercrankthrow,eachcounterweightforceisgivenby11FCWi;jC0mCWi;jC1rCWi;jC1x2C1C0sinhjci;jjcoshjci;jkhi;i1;2j1;2;.;64whereci,jistheoffsetangleofcounterweightmassfrom180C176oppo-siteofcrankthrowj”.Therearetwocounterweightsperthrow.i”denotesthecounterweightnumber.ThecounterweightsizethatisrequiredtoaccomplishanassessedbalancingrateisUCWKC1UCrankthrowmcr-rC1rC1cosc25whereUCWisthestaticunbalanceofeachcounterweight,UCrank_throwisthestaticunbalanceofeachcrankthrow,mcr-risthemassofconnectingrodrotatingportion,risthecrankradiusandKisthebalancingrateoftheinternalcoupleduetorotatingforces.Fromthisformulafollowsthebalancingrateforagivencrankshaftandagivencounterweightsize:K2C1UCWUCrankthrowmcr-rC1rC1cosc6Forastandardin-linesix-cylinderenginecrankshaftwiththreepairsofcrankthrowsdisposedatanglesof120C176thatarearrangedsymmetricaltothecrankshaftcentre,rotatingforces,andfirstandsecondorderreciprocatingforcesarenaturallybalanced.ThiscanbeexplainedbythefirstandsecondordervectorstarsshowninFig.4.Thesix-cylindercrankshaftgeneratesrotatingandfirstSoftware40(2009)9510497andsecondorderreciprocatingcouplesineachcrankshafthalfthatbalanceeachotherbutwhichresultininternalbendingmoment.Athighspeeds,thetwoequallydirectedcrankthrows,3and4yieldahighrotatingloadoncentremainbearing.Therotatinginertiaforceofeachcylinderisusuallyoffsetatleastpartiallybycounterweightsplacedontheoppositesideofeachcrank.Ingen-eral,thecounterweightsaredesignedforbalancingratesbetween50%and100%oftheinternalcouple.Gasforcesincylindersareactingonpistonhead,cylinderheadandonsidewallsofthecylinder.Thesefor
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年赤峰工业职业技术学院单招(计算机)测试备考题库必考题
- 2025年陕西航天职工大学单招(计算机)测试备考题库及答案1套
- 2026年新疆科技职业技术学院单招职业倾向性测试题库附答案
- 2025年阜阳幼儿师范高等专科学校辅导员招聘备考题库附答案
- 2026年辽宁机电职业技术学院单招(计算机)测试模拟题库附答案
- 2025年邢台应用技术职业学院辅导员招聘备考题库附答案
- 2026年江苏安全技术职业学院单招职业倾向性测试模拟测试卷附答案
- 2026年遂宁职业学院单招职业适应性测试模拟测试卷附答案
- 2026年无锡商业职业技术学院单招职业技能测试题库附答案
- 2025江苏徐钢钢铁集团有限公司岗位急聘51人备考题库带答案解析(夺冠)
- 信息检索技术(第五版)(微课版)习题答案
- 医疗器械进货查验记录制度
- 2022年华东师范大学公共课《马克思主义基本原理概论》期末试卷B(有答案)
- DL-T-692-2018电力行业紧急救护技术规范
- 高压电工证考试题库及答案(完整版)
- 医院超市投标经营方案(2篇)
- 燃煤启动锅炉运行与维护导则
- 2024年辽宁锦州北镇市公安局警务辅助人员招聘笔试参考题库附带答案详解
- 健身房管理制度20条 健身房管理制度总则(11篇)
- 前列腺临床路径表单
- 乘法的交换律和结合律
评论
0/150
提交评论