




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文AEnvelopeMethodofGearingFollowingStosic1998,screwcompressorrotorsaretreatedhereashelicalgearswithnonparallelandnonintersecting,orcrossedaxesaspresentedatFig.A.1.x01,y01andx02,y02arethepointcoordinatesattheendrotorsectioninthecoordinatesystemsfixedtothemainandgaterotors,asispresentedinFig.1.3.istherotationanglearoundtheXaxes.Rotationoftherotorshaftisthenaturalrotormovementinitsbearings.Whilethemainrotorrotatesthroughangle,thegaterotorrotatesthroughangle=r1w/r2w=z2/z1,whererwandzarethepitchcircleradiiandnumberofrotorlobesrespectively.Inadditionwedefineexternalandinternalrotorradii:r1e=r1w+r1andr1i=r1wr0.ThedistancebetweentherotoraxesisC=r1w+r2w.pistherotorleadgivenforunitrotorrotationangle.Indices1and2relatetothemainandgaterotorrespectively.Fig.A.1.CoordinatesystemofhelicalgearswithnonparallelandnonintersectingAxesTheprocedurestartswithagiven,orgeneratingsurfacer1(t,)forwhichameshing,orgeneratedsurfaceistobedetermined.Afamilyofsuchgener-atedsurfacesisgiveninparametricformby:r2(t,),wheretisaproleparameterwhileandaremotionparameters.r1=r1(t,)=x1,y1,z1=x01cos-y01sin,x01sin+y01cos,p1(A,.1)0,111tytxtr=0,cossin,sincos0101011tytxtytx(A.2)0,0,01010111xyyxr(A.3)cossin,sincos,),(1111122222zyzyCxzyxtrr202020202,sinsin,sincospyxyx(A.4)2020202022222,sincos,sinsin,pyxyxpxyrsin)(cos,cos)(sin,cossin121211CxpCxpyp(A.5)Theenvelopeequation,whichdeterminesmeshingbetweenthesurfacesr1andr2:0222rrtr(A.6)togetherwithequationsforthesesurfaces,completesasystemofequations.Ifageneratingsurface1isdenedbytheparametert,theenvelopemaybeusedtocalculateanotherparameter,nowafunctionoft,asameshingconditiontodefineageneratedsurface2,nowthefunctionofbothtand.Thecrossproductintheenvelopeequationrepresentsasurfacenormalandr2istherelative,slidingvelocityoftwosinglepointsonthesurfaces1and2whichtogetherformthecommontangentialpointofcontactofthesetwosurfaces.Sincetheequalitytozeroofascalartripleproductisaninvariantpropertyundertheappliedcoordinatesystemandsincetherelativevelocitymaybeconcurrentlyrepresentedinbothcoordinatesystems,aconvenientformofthemeshingconditionisdenedas:0211111rrtrrrtr(A.7)Insertionofpreviousexpressionsintotheenvelopeconditiongives:tyytxxppxC1111211cot)(0)cot(12111txCptypp(A.8)Thisisappliedheretoderivetheconditionofmeshingactionforcrossedhelicalgearsofuniformleadwithnonparallelandnonintersectingaxes.Themethodconstitutesageargenerationprocedurewhichisgenerallyapplicable.Itcanbeusedforsynthesispurposesofscrewcompressorrotors,whichareelectivelyhelicalgearswithparallelaxes.Formedtoolsforrotormanufacturingarecrossedhelicalgearsonnonparallelandnonintersectingaxeswithauniformlead,asinthecaseofhobbing,orwithnoleadasinformedmillingandgrinding.Templatesforrotorinspectionarethesameasplanarrotorhobs.Inallthesecasesthetoolaxesdonotintersecttherotoraxes.Accordinglythenotespresenttheapplicationoftheenvelopemethodtoproduceameshingconditionforcrossedhelicalgears.Thescrewrotorgearingisthengivenasanelementaryexampleofitsusewhileaprocedureforformingahobbingtoolisgivenasacomplexcase.Theshaftangle,centredistanceC,andunitleadsoftwocrossedhelicalgears,p1andp2arenotinterdependent.Themeshingofcrossedhelicalgearsisstillpreserved:bothgearrackshavethesamenormalcrosssectionprole,andtherackhelixanglesarerelatedtotheshaftangleas=r1+r2.Thisisachievedbytheimplicitshiftofthegearracksinthexdirectionforcingthemtoadjustaccordinglytotheappropriaterackhelixangles.Thiscertainlyincludesspecialcases,likethatofgearswhichmaybeorientatedsothattheshaftangleisequaltothesumofthegearhelixangles:=1+2.Furthermoreacentredistancemaybeequaltothesumofthegearpitchradii:C=r1+r2.Pairsofcrossedhelicalgearsmaybewitheitherbothhelixanglesofthesamesignoreachofoppositesign,leftorrighthanded,dependingonthecombinationoftheirleadandshaftangle.Themeshingconditioncanbesolvedonlybynumericalmethods.Forthegivenparametert,thecoordinatesx01andy01andtheirderivativesx01tandy01tareknown.Aguessedvalueofparameteristhenusedtocalculatex1,y1,x1tandy1t.Arevisedvalueofisthenderivedandtheprocedurerepeateduntilthedifferencebetweentwoconsecutivevaluesbecomessufficientlysmall.Forgiventransversecoordinatesandderivativesofgear1prole,canbeusedtocalculatethex1,y1,andz1coordinatesofitshelicoidsurfaces.Thegear2helicoidsurfacesmaythenbecalculated.Coordinatez2canthenbeusedtocalculateandnally,itstransverseprolepointcoordinatesx2,y2canbeobtained.Anumberofcasescanbeidentiedfromthisanalysis.(i)When=0,theequationmeetsthemeshingconditionofscrewmachinerotorsandalsohelicalgearswithparallelaxes.Forsuchacase,thegearhelixangleshavethesamevalue,butoppositesignandthegearratioi=p2/p1isnegative.Thesameequationmayalsobeappliedforthegen-erationofarackformedfromgears.Additionallyitdescribestheformedplanarhob,frontmillingtoolandthetemplatecontrolinstrument.122AEnvelopeMethodofGearing(ii)Ifadiscformedmillingorgrindingtoolisconsidered,itissuffcienttoplacep2=0.Thisisasingularcasewhentoolfreerotationdoesnotaffectthemeshingprocess.Therefore,areversetransformationcannotbeobtaineddirectly.(iii)Thefullscopeofthemeshingconditionisrequiredforthegenerationoftheproleofaformedhobbingtool.Thisisthereforethemostcompli-catedtypeofgearwhichcanbegeneratedfromit.BReynoldsTransportTheoremFollowingHanjalic,1983,ReynoldsTransportTheoremdenesachangeofvariableinacontrolvolumeVlimitedbyareaAofwhichvectorthelocalnormalisdAandwhichtravelsatlocalspeedv.Thiscontrolvolumemay,butneednotnecessarilycoincidewithanengineeringorphysicalmaterialsystem.Therateofchangeofvariableintimewithinthevolumeis:vVdVtt(B.1)Therefore,itmaybeconcludedthatthechangeofvariableinthevolumeViscausedby:changeofthespecicvariablem/intimewithinthevolumebecauseofsources(andsinks)inthevolume,tdVwhichiscalledalocalchangeandmovementofthecontrolvolumewhichtakesanewspacewithvariableinitandleavesitsoldspace,causingachangeintimeofforv.dAandwhichiscalledconvectivechangeTherstcontributionmayberepresentedbyavolumeintegral:.dVtV(B.2)whilethesec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校乐器外借协议书
- 安装景观凳子协议书
- 学生回家吃饭协议书
- 图文广告合同协议书
- 婚内变卖财产协议书
- 前列腺炎手术适应症
- 跨界艺术交流与合作计划
- 医疗机构综合办公室工作总结及未来计划
- 新能源项目承包人工作计划
- 衍纸画文化传播活动计划
- 2023北京朝阳区初三一模英语试题及参考答案
- 2024年浙江省中考社会试卷真题(含标准答案及评分标准)
- 2025届高考作文复习:读写结合型作文审题立意
- 你好疯子剧本-你好疯子话剧
- RPA制造行业常见场景
- 云南省曲靖市马龙区通泉中学2025年初三毕业考试英语试题含答案
- 社区戒毒(康复)工作规范
- 设备损坏赔偿协议书范本
- 大国脊梁智慧树知到期末考试答案章节答案2024年中北大学
- 近五年重庆中考物理试题及答案2024
- CJT396-2012 鸭嘴式橡胶止回阀
评论
0/150
提交评论