物质的跨膜运输与信号传递_第1页
物质的跨膜运输与信号传递_第2页
物质的跨膜运输与信号传递_第3页
物质的跨膜运输与信号传递_第4页
物质的跨膜运输与信号传递_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

物质的跨膜运输与信号传递一教学目标1深刻理解被动运输、主动运输和内吞外排的概念,以及物质跨膜运输的重要意义;2理解细胞信号传递的主要特点,掌握甾类激素信号通路、CAMP信号通路、磷脂酰肌醇信号通路和EGF受体信号通路的主要环节。二重点跨膜运输的方式和细胞通讯的信号通路。三难点跨膜运输的机制。四授课方式与教学方法讲授、讨论、多媒体辅助教学。五教学内容细胞膜是细胞与细胞外环境之间的一种选择性通透屏障,物质的跨膜运输对细胞的生存和生长至关重要。多细胞生物是一个繁忙而有序的细胞社会,这种社会性的维持不仅依赖于细胞的物质代谢与能量代谢,还有赖于细胞通讯与信号传递,以协调细胞的行为。第一节第一节物质的跨膜运输物质的跨膜运输一被动运输(PASSIVETRANSPORT)定义通过简单扩散或协助扩散实现物质由高浓度向低浓度方向的跨膜转运。转运的动力来自物质的浓度梯度,不需要细胞提供能量。类型简单扩散(SIMPLEDIFFUSION)、协助扩散(FACILITATEDDIFFUSION)膜转运蛋白1载体蛋白(CARRIERPROTEINS)通透酶(PERMEASE)性质;介导被动运输与主动运输。2通道蛋白(CHANNELPROTEINS)具有离子选择性,转运速率高;离子通道是门控的;只介导被动运输膜转运蛋白通道蛋白被动运输膜转运蛋白载体蛋白单运输被动运输主动运输共运输协同运输对向运输细胞膜上的运输蛋白载体蛋白通过构象变化运输物质通道蛋白形成通道、运输物质载体蛋白膜上一类转运蛋白,可特异的、可逆的与某物质结合,通过构象变化将物质从膜的一侧运到另一侧。又称通透酶,与运输物质的结合与酶的动力学相似。通道蛋白形成亲水的通道,允许一定大小和一定电荷的离子通过。因运转的几乎都是离子,又称离子通道通道蛋白形成通道持续开放(如水通道)间断开放(闸门通道)配体闸门通道配体与受体结合,通道开放。电压闸门通道膜电位变化,启动通道开放。压力激活通道压力变化,启动通道开放。离子闸门通道特定离子浓度变化,启动通道。神经神经肌肉兴奋,不到秒钟的时间内完成,这一过程包括四肌肉兴奋,不到秒钟的时间内完成,这一过程包括四种通道顺次例如神经种通道顺次例如神经肌肉兴奋,不到秒钟的时间内完成,这一过程包括四种通道顺次开放肌肉兴奋,不到秒钟的时间内完成,这一过程包括四种通道顺次开放A、刺激神经冲动神经末梢,膜去极化,电压闸门通道钙离子通道开放,钙离子进入神经末梢,刺激乙酰胆碱(ACH)分泌到突触间隙中;B、ACH与突触后肌细胞膜上的受体结合,配体闸门钠离子通道开放,钠离子进入肌细胞,肌细胞膜去极化;C、肌细胞膜上电压闸门钠离子通道开放,更多的钠离子进入肌细胞,肌细胞膜进一步去极化,产生动作电位,扩散到肌细胞膜;D、肌浆网上的离子闸门通道钙离子通道开放,钙离子进入细胞质,引起肌肉收缩。二二主动运输(主动运输(ACTIVETRANSPORT)定义是由载体蛋白所介导的物质逆浓度梯度或电化学梯度由浓度低的一侧向浓度高的一侧进行跨膜转运的方式。细胞耗能。由ATP直接提供能量和间接提供能量及光能驱动被动与主动运输的比较主动运输类型三种基本类型由ATP直接提供能量的主动运输钠钾泵钙泵(CA2ATP酶)质子泵P型质子泵、V型质子泵、HATP酶协同运输(COTRANSPORT)由NAK泵(或H泵)与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式物质的跨膜转运与膜电位进行主动运输的物质进行主动运输的物质各种离子(如钠离子、钾离子、氯离子、碳酸根离子、钙离子等)。葡萄糖、氨基酸等带电荷极性分子。进行主动运输的载体又称“离子泵”钠钾泵膜上运输钠和钾离子的载体称“钠钾泵”或“钠钾ATP酶”。钠钾泵的组成大亚基(100000DN)外侧1、钾结合位点;2、鸟苯苷结合位点内侧1、钠结合点;2、ATP结合点小亚基(45000DN)与大亚基结合,作用不明。“钠钾泵钠钾泵”的主动运输的主动运输机制即3NA结合到结合位点上酶磷酸化酶构象变化3NA释放到细胞外2K结合到位点上酶去磷酸化2K释放到细胞内,酶构象恢复原始状态。NAK泵的作用泵的作用产生和维持膜电位;为葡萄糖、氨基酸的主动运输创造条件;维持细胞的渗透压,例如当肾小管细胞间隙钠过高时会导致细胞内水分外渗,细胞内缺水,人会感到口渴而饮水多。钙泵钙泵,又称又称CA2ATP酶酶位于质膜和内质网上的跨膜蛋白,将CA2输出细胞或泵入内质网腔中储存,以维持细胞内低浓度的游离CA2钙泵工作与钙泵工作与ATP的水解相偶联的水解相偶联,每消耗一个每消耗一个ATP分子转运两个分子转运两个CA2钙调蛋白是钙泵的激钙调蛋白是钙泵的激活因子活因子钙调蛋白钙调蛋白CAM是是CA2应答蛋白应答蛋白,由由148个氨基酸残基组成个氨基酸残基组成,含含4个结构域个结构域,每个结构域可以与一个每个结构域可以与一个CA2CAM本身无活性本身无活性,CA2与与CAM结合后形成结合后形成CA2CAM复合体复合体,再与靶酶结合将其活化再与靶酶结合将其活化质子泵质子泵,又称又称HATP酶酶位于植物细胞、真菌和细菌质膜上的跨膜蛋白,将H泵出细胞建立跨膜的H电化学梯度,驱动转运溶质进入细胞。P型质子泵位于真核细胞的质膜上,转运H过程中涉及磷酸化和去磷酸化。V型质子泵位于动物细胞溶酶体膜和植物液泡膜上,转运H过程中不涉及磷酸化的中间体。提高细胞质中的PH和细胞器内的酸度。HATP酶位于线粒体的内膜,植物类囊体膜和细菌质膜上,利用膜上H梯度梯度合成ATP。协同运输(COTRANSPORT)由NAK泵(或H泵)与载体蛋白协同作用,靠间接消耗ATP所完成的主动运输方式主动运输的能量不是由ATP直接提供,而是由储存在膜上离子梯度中的能量来驱动的。这类运输进行时,一种物质的运输必须依赖另一种物质的同时运输,故称为协同运输。协同运输协同运输两种物质同时相向转运,称对向运输(逆向协同运输)。如NAK;NAH;CLHCL3两种物质同时同向转运,称共运输(同向协同运输)。如NAG;NAAA浓度差电位差电化学梯度动物细胞中,NA的电化学梯度通常是驱动另一种分子主运输的能量,如NA梯度驱动G、AA的主动运输三、胞吞作用(ENDOCYTOSIS)与胞吐作用(EXOCYTOSIS)作用完成大分子与颗粒性物质的跨膜运输,又称膜泡运输或批量运输(BULKTRANSPORT)。属于主动运输。胞吞作用胞吐作用胞吞作用胞饮作用(PINOCYTOSIS)与吞噬作用(PHAGOCYTOSIS)。胞饮作用与吞噬作用主要有三点区别特征内吞泡的大小转运方式内吞泡形成机制胞饮作用小于150NM连续发生的过程需要笼形蛋白形成包被及接合素蛋白连接吞噬作用大于250NM需受体介导的信号触发过程需要微丝及结合蛋白的参与受体介导的内吞作用及包被的组装胞内体是动物细胞内由膜包围的细胞器,其作用是传输由胞吞作用新摄入的物质到溶酶体被降解。胞内体上有质子泵。胞吐作用胞吐作用是将细胞内的分泌泡或其他某些膜泡中的物质通过细胞膜运出细胞的过程。组成型的外排途径(CONSTITUTIVEEXOCYTOSISPATHWAY)所有真核细胞连续分泌过程用于质膜更新(膜脂、膜蛋白、胞外基质组分、营养或信号分子)DEFAULTPATHWAY除某些有特殊标志的駐留蛋白和调节型分泌泡外,其余蛋白的转运途径粗面内质网高尔基体分泌泡细胞表面调节型外排途径(REGULATEDEXOCYTOSISPATHWAY)特化的分泌细胞储存刺激释放产生的分泌物(如激素、粘液或消化酶)具有共同的分选机制,分选信号存在于蛋白本身,分选主要由高尔基体TGN上的受体类蛋白来决定膜流动态过程对质膜更新和维持细胞的生存与生长是必要的囊泡与靶膜的识别与融合胞吞作用途径胞吞作用途径膜上糖蛋白或糖脂识别与膜接触膜内陷包围物质膜融合去封口囊泡进入细胞胞内体是动物细胞内由膜包围的细胞器,其作用是传输由胞吞作用新摄入的物质到溶酶体被降解。胞内体上有质子泵。第二节第二节细胞通讯与信号传递细胞通讯与信号传递一、细胞通讯与细胞识别一、细胞通讯与细胞识别(一)细胞通讯(CELLCOMMUNICATION)一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。细胞间的通讯对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。细胞通讯方式分泌化学信号进行通讯内分泌(ENDOCRINE)激素分泌后作用较远的靶细胞,其传递介质为血液。激素分泌后作用较远的靶细胞,其传递介质为血液。旁分泌(PARACRINE)激素分泌释放后作用于邻近的靶细胞,其传递介质为细胞间液。激素分泌释放后作用于邻近的靶细胞,其传递介质为细胞间液。自分泌(AUTOCRINE)激素分泌释放后仍作用于自身细胞,其传递介质为胞液;激素分泌释放后仍作用于自身细胞,其传递介质为胞液;化学突触(CHEMICALSYNAPSE)接触性依赖的通讯细胞间直接接触,信号分子与受体都是细胞的跨膜蛋白间隙连接实现代谢偶联或电偶联(二)细胞识别(CELLRECOGNITION)概念细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。信号通路(SIGNALINGPATHWAY)细胞识别是通过各种不同的信号通路实现的。细胞接受外界信号,通过一整套特定的机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称之为细胞信号通路。(三)细胞的信号分子与受体(三)细胞的信号分子与受体信号分子(SIGNALMOLECULE)亲脂性信号分子()亲水性信号分子气体性信号分子NO受体(RECEPTOR)受体是细胞膜或细胞内的功能性糖蛋白,可特异地识别配体并与之结合,引起相应的生物效应。多为糖蛋白细胞内受体为胞外亲脂性信号分子所激活激素激活的基因调控蛋白(胞内受体超家族)此型受体主要包括类固醇激素受体,如糖皮质激素受体(GR)、雌激素受体(ER)、孕激素受体(PR)、雄激素受体(AR)、盐皮质激素受体(MR)等;维生素D3受体(VDR)以及甲状腺激素受体(TR)。这些激素进入细胞以后,能与特异性受体结合形成活性复合物,然后作用于染色体DNA,调节基因表达,从而影响细胞的物质代谢和生理活动。细胞表面受体为胞外亲水性信号分子所激活细胞表面受体分属三大家族离子通道偶联的受体(IONCHANNELLINKEDRECEPTOR)G蛋白偶联的受体(GPROTEINLINKEDRECEPTOR)酶偶连的受体(ENZYMELINKEDRECEPTOR)受体的功能介导物质跨膜运输受体介导的内吞作用信号转导受体的激活(ACTIVATION)(级联反应);受体失敏(DESENSITIZATION)关闭反应、减量调节(DOWNREGULATION)降低反应。第二信使(SECONDMESSENGER)CAMP、CGMP、三磷酸肌醇(IP3),二酰基甘油(DG)分子开关(MOLECULARSWITCHES)细胞内信号传递中起举足轻重作用的一类蛋白质,通过磷酸化或结合GTP而活化,开启信号通路,通过去磷酸化或结合GDP而失活,关闭信号通过。二、通过细胞内受体介导的信号传递亲脂性的小分子通过与细胞内受体结合传递信号。细胞内受体本质是激素激活的基因调控蛋白,构成细胞内受体家族。甾类激素介导的信号通路两步反应阶段初级反应阶段直接活化少数特殊基因转录的,发生迅速;次级反应初级反应产物再活化其它基因产生延迟的放大作用。一氧化氮介导的信号通路三、通过细胞表面受体介导的信号跨膜传递亲水性的化学信号分子一般不能直接进入细胞,而是通过与细胞表面特异受体的结合,进行信号传导,进而对靶细胞产生效应。根据信号转导机制和受体蛋白类型的不同,细胞表面受体分为三大家族(一)离子通道偶联的受体介导的信号跨膜传递(一)离子通道偶联的受体介导的信号跨膜传递受体自身为离子通道,信号(神经递质)与受体识别结合,开闭通道,离子流动,改变细胞膜的兴奋性。特点受体/离子通道复合体,四次/六次跨膜蛋白跨膜信号转导无需中间步骤主要存在于神经细胞或其他可兴奋细胞间的突触信号传递有选择性配体的特异性选择和运输离子的选择性G蛋白偶联的受体介导的信号跨膜传递蛋白偶联的受体介导的信号跨膜传递由G蛋白介导,将信息传递给第二信使,引起一系列胞内生物效应。G蛋白鸟苷酸结合蛋白的总称,其共同特征是由GBA三个亚单位组成;位于细胞膜受体与效应器之间的转导蛋白;具有结合GDP或GTP的能力,有GTP酶活性;可激活效应蛋白,实现信息转导功能。CAMP信号通路磷脂酰肌醇信号G蛋白偶联受体又称蛇型受体。此型受体通常由单一的多肽链或均一的亚基组成,其肽链可分为细胞外区、跨膜区、细胞内区三个区。跨膜区由7个螺旋结构组成;多肽链的N端位于细胞外区,而C端位于细胞内区;在第五及第六跨膜螺旋结构之间的细胞内环部分(第三内环区),是与G蛋白偶联的区域。大多数常见的神经递质受体和激素受体是属于G蛋白偶联型受体。细胞表面其它与酶偶联的受体自身是酶,具有TPK活性,主要是一些生长因子的受体,与配体结合即活化,使靶蛋白的酪氨酸残基磷酸化,引起细胞反应。通常与酶连接的细胞表面受体又称催化性受体,目前已知的这类受体都是跨膜蛋白,当胞外配基与受体结合即激活受体胞内段的酶活性。至少包括5类受体酪氨酸激酶受体蛋白酪氨酸残基自磷酸化。受体丝氨酸/苏氨酸激酶如TGF的作用受体酪氨酸磷酸酯酶受体蛋白酪氨酸残基去磷酸化受体鸟苷酸环化酶(ANPSSIGNALS)合成CGMP酪氨酸蛋白激酶联系的受体CAMP信号通路信号通路反应链激素G蛋白偶联受体G蛋白腺苷酸环化酶CAMPCAMP依赖的蛋白激酶A基因调控蛋白基因转录组分及其分析G蛋白偶联受体G蛋白活化与调节G蛋白的效应蛋白(酶)主要有腺苷酸环化酶(AC)和磷脂酶C(PLC)。前者可催化第二信使CAMP的产生,后者可催化第二信使DG和IP3的产生,从而将配体的信号传递到细胞内。1、CAMP信号途径信号途径信号与受体结合,受体活化,构象改变,暴露与G蛋白的结合部位。配体受体复合物与G蛋白结合,G活化,GS构象改变,结合GTPGSGTP复合物与分离,暴露与AC的结合部位。GSGTP与AC结合,AC活化,分解ATP为CAMPGS分解GTP为GDP,构型改变,与AC分离,AC失活,GS与结合,恢复静息状态。GPLR的失敏的失敏例肾上腺素受体被激活后,1015秒CAMP骤增,然后在不到1MIN内反应速降,以至消失。受体活性快速丧失(速发相)失敏(DESENSITIZATION);机制受体磷酸化受体与GS解偶联,CAMP反应停止并被PDE降解。两种SER/THR磷酸化激酶PKA和肾上腺素受体激酶(ARK),负责受体磷酸化;胞内协作因子扑获蛋白(ARRESTIN)结合磷酸化的受体,抑制其功能活性(ARRESTIN已克隆、定位11Q13)。反应减弱(迟发相)减量调节(DOWNREGULATION)机制受体配体复合物内吞,导致表面受体数量减少,发现ARRESTIN可直接与CLATHRIN结合,在内吞中起ADEPTORS作用;受体减量调节与内吞后受体的分选有关。磷脂酰肌醇信号通路磷脂酰肌醇信号通路“双信使系统”反应链胞外信号分子G蛋白偶联受体激活细胞质膜上的IP3胞内CA2浓度升高CA2结合蛋白CAM细胞反应磷脂酶CPLC使细胞质膜上的PIP2水解DG激活PKC蛋白磷酸化或促NA/H交换使胞内PH升高PIP24,5二磷酸磷脂酰肌醇PKC蛋白激酶CIP31,4,5三磷酸肌醇DG二酰基甘油受体酪氨酸激酶及RTKRAS蛋白信号通路受体酪氨酸激酶(RECEPTORTYROSINEKINASES,RTKS)包括6个亚族信号转导配体受体受体二聚化受体的自磷酸化激活RTK胞内信号蛋白启动信号传导RTKRAS信号通路配体RTKADAPTORGRFRASRAF(MAPKKK)MAPKKMAPK进入细胞核其它激酶或基因调控蛋白(转录因子)的磷酸化修钸。G蛋白偶联受体介导的MAPK的激活RTKS的失敏(DESENSITIZATION)G蛋白偶联受体介导的MAPK的激活MAPK(MITOGENACTIVATEDPROTEINKINASE)又称ERK(EXTRACELULARSIGNALREGULATEDKINASE)真核细胞广泛存在的SER/THR蛋白激酶。MAPK的底物膜蛋白(受体、酶)、胞浆蛋白、核骨架蛋白、及多种核内或胞浆内的转录调控因子在细胞增殖和分化中具有重要调控作用。PTX敏感性G蛋白(GI,GO)的亚基依赖于RAS激活MAPK,具体机制还有待深入研究;PKC、PLC与G蛋白偶联受体介导的MAPK激活PKC和PLC参与G蛋白偶联受体激活MAPKG蛋白偶联受体激活G蛋白;G蛋白亚基或亚基激活PLC,促进膜磷脂代谢;磷脂代谢产物(DAGIP3)激活PKC;PKC通过RAS或RAF激活MAPK;由于PKC对钙的依赖性不同,所以G蛋白偶联受体MAPK途径对钙要求不同;PKA对G蛋白偶联受体MAPK途径的负调控迄今未发现和制备出MAPK组成型突变(DOMINANTNEGATIVEMUTANT),提示细胞难于忍受MAPK的持续激活(MAPK的去活是细胞维持正常生长代谢所必须)。主要机制特异性的TYR/THR磷脂酶可选择性地使MAPK去磷酸化,关闭MAPK信号。CAMP,MAPK;CAMP直接激活CAMP依赖的PKA;PKA可能通过RTK或通过抑制RAFRAS相互作用起负调控作用。RTKS的失敏催化性受体的效应器位于受体本身,因此失敏即酶活性速发抑制。机制受体的磷酸化修饰。EGF受体THR654的磷酸化导致RTK活性的抑制,如果该位点产生ALA突变,则阻止活性抑制,后又发现C端的SER1046/7也是磷酸化位点。磷酸化位点所在的C端恰好是SH2蛋白的结合部位。引起受体磷酸化的激酶PKC作用于THR654;CAMK2(CA2和CAM依赖的激酶2)作用于SER1046/7还发现EGF受体是CDK的靶蛋白,提示和周期调控有关。RTK晶体结构研究表明,RTK激活后形成稳定的非抑制性构象;磷酸化修饰后,形成抑制性构象,引起失敏。RTK失敏对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论