外文翻译--数值模拟与影响铝电解槽磁热耦合问题  英文版.pdf_第1页
外文翻译--数值模拟与影响铝电解槽磁热耦合问题  英文版.pdf_第2页
外文翻译--数值模拟与影响铝电解槽磁热耦合问题  英文版.pdf_第3页
外文翻译--数值模拟与影响铝电解槽磁热耦合问题  英文版.pdf_第4页
外文翻译--数值模拟与影响铝电解槽磁热耦合问题  英文版.pdf_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AbstractqSponsors:Alcan-PechineyCompanyandSwissNationalScienceFoundation;GrantNo.200020-101391.*Correspondingauthor.Tel.:+41223792366;fax:+41223792205.E-mailaddresses:yasser.safaepfl.ch,yasser.safaobs.unige.ch(Y.Safa).AAppliedMathematicalModelling33(2009)14791492/locate/apm0307-904X/$-seefrontmatterC2112008ElsevierInc.Allrightsreserved.Aphasechangingproblemmotivatedbythemodellingofthermalproblemcoupledwithmagnetohydro-dynamiceectsinareductioncellisstudied.InasmeltingcelloperatingwithHallHeroultprocess,themetalpartisproducedbytheelectrolysisofaluminiumoxidedissolvedinabathbasedonmoltencryolite1.Var-iousphenomenatakeplaceinsuchacellforwhichatransversesectionisschematicallypicturedinFig.1.Runningfromtheanodesthroughliquidaluminiumandcollectorbars,thesteadyelectriccurrentspreadsintheelectrolyticbath.Theimportantmagneticfieldgeneratedbythecurrentscarriedtothealignmentofcells,coupledwiththecurrentsrunningthroughthecellsthemselvesgivesrisetoafieldofLaplaceforceswhichmaintainsamotionwithinthesetwoconductingliquids.Amagnetohydrodynamicinteractiontakesplaceinthecell.IntheotherhandaheatingsourceisproducedbytheJouleeectduetotheelectricresistivityofthebath.Asystemofpartialdierentialequationsdescribingthethermalbehaviorofaluminiumcellcoupledwithmagnetohy-drodynamiceectsisnumericallysolved.Thethermalmodelisconsideredasatwo-phasesStefanproblemwhichconsistsofanon-linearconvectiondiusionheatequationwithJouleeectasasource.Themagnetohydrodynamicfieldsaregov-ernedbyNavierStokesandbystaticMaxwellequations.Apseudo-evolutionaryscheme(Cherno)isusedtoobtainthestationarysolutiongivingthetemperatureandthefrozenlayerprofileforthesimulationoftheledgesinthecell.Anumer-icalapproximationusingafiniteelementmethodisformulatedtoobtainthefluidvelocity,electricalpotential,magneticinductionandtemperature.Aniterativealgorithmand3-Dnumericalresultsarepresented.C2112008ElsevierInc.Allrightsreserved.Keywords:Aluminiumelectrolysis;Chernoscheme;Heatequation;Magnetohydrodynamics;Ledge;Solidification1.IntroductionNumericalsimulationofthermalproblemscoupledwithmagnetohydrodynamiceectsinaluminiumcellqY.Safa*,M.Flueck,J.RappazInstituteofAnalysisandScientificComputing,EcolePolytechniqueFederaledeLausanne,Station8,1015Lausanne,SwitzerlandReceived27December2006;receivedinrevisedform4February2008;accepted8February2008Availableonline29February2008doi:10.1016/j.apm.2008.02.011ElectrolyteAnodeBlocksFig.1.Transversecrosssectionofaluminiumreductioncell.1480Y.Safaetal./AppliedMathematicalModelling33(2009)14791492Onthewallofthecell,asolidifiedbathlayer,theso-calledledgeiscreated.Theseledgesprotectthecellsidewallfromcorrosiveelectrolyticbathandreducetheheatlossfromthecell(see2page23).Moreover,itsprofilestronglyinfluencesthemagnetohydrodynamicstabilitycausingoscillationsofthealuminiumbathinterfacewhichcoulddecreasethecurrenteciency.Consequentlyanoptimalledgeprofileisoneoftheobjec-tivesofcellsidewalldesign.Thethermalsolidificationprobleminsmeltingcellhasbeentreatedbyseveralauthors35.Asfarasweareaware,thisproblemhasneverbeenconsideredwhencoupledwiththemagnetohydrodynamicfields.Theaimofthispaperistodealwithsuchfieldsinteraction.LetusmentionthatthedetailsonthisproblemcanbefoundinSafasthesis6.Mathematically,theproblemistosolveacoupledsystemofpartialdierentialequationsconsistingoftheheatequationwithJouleeectasasource,MaxwelllawequationswithelectricalconductivityasafunctionoftemperatureandNavierStokesequations.Theinterfacebetweenaluminiumandbathisanunknown.Theledgeisconsideredaselectricalinsulator,thethermalmodelisastationarytwo-phasesStefanproblem.Theoutlineofthispaperisasfollow:inSection2weintroducethephysicalmodel,thealgorithmispresentedAluminiumCathodeLiningFrozenledgeFrozenledgeinSection3andwegivethenumericalresultsinSection4.2.ThemodelInordertointroducethemodelwefirstdescribesomegeometricalandphysicalquantities.2.1.GeneraldescriptionsThegeometryisschematicallydefinedbyFig.1.Weintroducethefollowingnotations:C15XX1X2:fluidsandsolidledge,C15NN1N2:electrodes,C15KXN:domainrepresentingthecellandwedefinetheinterfaces:C15CoX1oX2:freeinterfacebetweenaluminiumandbath,whichisanunknown,C15RioKoNi;i1;2,C15RR1R2:outerboundaryoftheelectrodes.Y.Safaetal./AppliedMathematicalModelling33(2009)147914921481C15Cp:specificheat,C15:latentheat.2.2.PhysicalassumptionsThemodelleansonthefollowingbasichypotheses:1.Thefluidsareimmiscible,incompressibleandNewtonian.2.IneachdomainXi,i=1,2,thefluidsaregovernedbythestationaryNavierStokesequations.3.TheelectromagneticfieldssatisfythestationaryMaxwellsequations,OhmslawismoreoversupposedtobevalidinallthecellK.4.Theelectricalcurrentdensityoutsidethecellisgiven(currentinthecollectorbars).5.Theelectricalconductivityrisfunctionoftemperaturehinthefluidsandelectrodesparts.6.Theviscosityg,thedensityqandthespecificheatCparetemperatureindependent.7.ThevolumesofthedomainsX1andX2havegivenvalues(massconservation).8.TheonlyheatsourceisproducedbytheJouleeectduetothecurrentcrossingthecell.9.Eectsofchemicalreactions7,Marangonieect8,9,surfacetensionaswellasthepresenceofgasflowareneglected.2.3.ThehydrodynamicproblemInthispartweconsiderthetemperaturefieldhandtheelectromagneticfieldsjandbasknown.WechoosetorepresenttheunknowninterfacebetweenaluminiumandbathbyaparametrizationoftheformCC22hx;y;z:zC22hx;y;x;y2DC138,whereDisusuallyarectanglecorrespondingtotheparametrizationofaluminiumcathodeinterface.WedenotethedependenceofX1;X2andCwithrespecttoC22hbyusingTheunknownphysicalfieldswithwhichweshalldealarelistedasfollows:Hydrodynamicfields:C15u:velocityfieldinXi;i1;2;(u0insolidledges),C15p:pressure.Electromagneticfields:C15b:magneticinductionfield,C15e:electricfield,C15j:electriccurrentdensity.Thermalfields:C15H:enthalpy,C15h:temperature.ThematerialpropertiesaredefinedasC15q:massdensity,C15rbandr:electricalconductivityinand,respectively,outsidethebath,C15g:viscosityofthefluids,C15l0:magneticpermeabilityofthevoid,C15k:thermalconductivity,XiXiC22h;i1;2;CCC22h:hx;ydxdyV1;whereV1isthevolumeofaluminium:1C22C22Here3thosethefluids.fieldsThefluidC22C22Inorderinvolvingapenalizationtool.Thevelocityandthepressurewillthenbedefinedinbothliquidsandsolids.WefunctionKisgivenbyCarmanKozeny”law:theDarcy1482Y.Safaetal./AppliedMathematicalModelling33(2009)14791492Whenfs!1,wegetKfs!1andthenu0inthesolidzone.law:rpqgzC0Kujb:IfonlyliquidphaseispresentwehaveK0andtheaboveequationreducestotheusualNavierStokesequa-tion.InsidethemushyzoneKmaybeverylarge,comparedtotheotherterms,andtheaboveequationmimicsqu;ruC0div2lDuC0pqgzIKujbinX1C22hX2C22h:7wherePisthemeanporesizeandCisaconstantobtainedexperimentally(see10).Eq.(1)maythenbemod-ifiedtoKfslCf2sP21C0fs3;addtoNavierStokesequationthetermKfsu;fsisthesolidfractionwhichisafunctionoftemperature.ThepartofXihi=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论