




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
英文原文DigitalImageProcessingandEdgeDetection1.DigitalImageProcessingInterestindigitalimageprocessingmethodsstemsfromtwoprincipalapplicant-ionareas:improvementofpictorialinformationforhumaninterpretation;andprocessingofimagedataforstorage,transmission,andrepresentationforau-tenuousmachineperception.Animagemaybedefinedasatwo-dimensionalfunction,f(x,y),wherexandyarespatial(plane)coordinates,andtheamplitudeoffatanypairofcoordinates(x,y)iscalledtheintensityorgrayleveloftheimageatthatpoint.Whenx,y,andtheamplitudevaluesoffareallfinite,discretequantities,wecalltheimageadigitalimage.Thefieldofdigitalimageprocessingreferstoprocessingdigitalimagesbymeansofadigitalcomputer.Notethatadigitalimageiscomposedofafinitenumberofelements,eachofwhichhasaparticularlocationandvalue.Theseelementsarereferredtoaspictureelements,imageelements,peels,andpixels.Pixelisthetermmostwidelyusedtodenotetheelementsofadigitalimage.Visionisthemostadvancedofoursenses,soitisnotsurprisingthatimagesplaythesinglemostimportantroleinhumanperception.However,unlikehumans,whoarelimitedtothevisualbandoftheelectromagnetic(EM)spec-trump,imagingmachinescoveralmosttheentireEMspectrum,rangingfromgammatoradiowaves.Theycanoperateonimagesgeneratedbysourcesthathumansarenotaccustomedtoassociatingwithimages.Theseincludeultra-sound,electronmicroscopy,andcomputer-generatedimages.Thus,digitalimageprocessingencompassesawideandvariedfieldofapplications.Thereisnogeneralagreementamongauthorsregardingwhereimageprocessingstopsandotherrelatedareas,suchasimageanalysisandcomputervi-son,start.Sometimesadistinctionismadebydefiningimageprocessingasadisciplineinwhichboththeinputandoutputofaprocessareimages.Webelievethistobealimitingandsomewhatartificialboundary.Forexample,underthisdefinition,eventhetrivialtaskofcomputingtheaverageintensityofanimage(whichyieldsasinglenumber)wouldnotbeconsideredanimageprocessingoperation.Ontheotherhand,therearefieldssuchascomputervisionwhoseultimategoalistousecomputerstoemulatehumanvision,includinglearningandbeingabletomakeinferencesandtakeactionsbasedonvisualinputs.Thisareaitselfisabranchofartificialintelligence(AI)whoseobjectiveistoemulatehumanintelligence.ThefieldofAIisinitsearlieststagesofinfancyintermsofdevelopment,withprogresshavingbeenmuchslowerthanoriginallyanticipated.Theareaofimageanalysis(alsocalledimageunderstanding)isinbe-teenimageprocessingandcomputervision.Therearenoclear-cutboundariesinthecontinuumfromimageprocessingatoneendtocomputervisionattheother.However,oneusefulparadigmistoconsiderthreetypesofcomputerizedprocessesinthiscontinuum:low-,mid-,andhigh-levelprocesses.Low-levelprocessesinvolveprimitiveopera-tonssuchasimagepreprocessingtoreducenoise,contrastenhancement,andimagesharpening.Alow-levelprocessischaracterizedbythefactthatbothitsinputsandoutputsareimages.Mid-levelprocessingonimagesinvolvestaskssuchassegmentation(partitioninganimageintoregionsorobjects),descriptionofthoseobjectstoreducethemtoaformsuitableforcomputerprocessing,andclassification(recognition)ofindividualobjects.Amidlevelprocessischaracterizedbythefactthatitsinputsgenerallyareimages,butitsoutputsareattributesextractedfromthoseimages(e.g.,edges,contours,andtheidentityofindividualobjects).Finally,higher-levelprocessinginvolves“makingsense”ofanensembleofrecognizedobjects,asinimageanalysis,and,atthefarendofthecontinuum,performingthecognitivefunctionsnormallyassociatedwithvision.Basedontheprecedingcomments,weseethatalogicalplaceofoverlapbetweenimageprocessingandimageanalysisistheareaofrecognitionofindividualregionsorobjectsinanimage.Thus,whatwecallinthisbookdigitalimageprocessingencompassesprocesseswhoseinputsandoutputsareimagesand,inaddition,encompassesprocessesthatextractattributesfromimages,uptoandincludingtherecognitionofindividualobjects.Asasimpleillustrationtoclarifytheseconcepts,considertheareaofautomatedanalysisoftext.Theprocessesofacquiringanimageoftheareacontainingthetext,preprocessingthatimage,extracting(segmenting)theindividualcharacters,describingthecharactersinaformsuitableforcomputerprocessing,andrecognizingthoseindividualcharactersareinthescopeofwhatwecalldigitalimageprocessinginthisbook.Makingsenseofthecontentofthepagemaybeviewedasbeinginthedomainofimageanalysisandevencomputervision,dependingonthelevelofcomplexityimpliedbythestatement“makingsense.”Aswillbecomeevidentshortly,digitalimageprocessing,aswehavedefinedit,isusedsuccessfullyinabroadrangeofareasofexceptionalsocialandeconomicvalue.Theareasofapplicationofdigitalimageprocessingaresovariedthatsomeformoforganizationisdesirableinattemptingtocapturethebreadthofthisfield.Oneofthesimplestwaystodevelopabasicunderstandingoftheextentofimageprocessingapplicationsistocategorizeimagesaccordingtotheirsource(e.g.,visual,X-ray,andsoon).Theprincipalenergysourceforimagesinusetodayistheelectromagneticenergyspectrum.Otherimportantsourcesofenergyincludeacoustic,ultrasonic,andelectronic(intheformofelectronbeamsusedinelectronmicroscopy).Syntheticimages,usedformodelingandvisualization,aregeneratedbycomputer.Inthissectionwediscussbrieflyhowimagesaregeneratedinthesevariouscategoriesandtheareasinwhichtheyareapplied.ImagesbasedonradiationfromtheEMspectrumarethemostfamiliar,esp.-especiallyimagesintheX-rayandvisualbandsofthespectrum.Electromagnet-icewavescanbeconceptualizedaspropagatingsinusoidalwavesofvaryingwavelengths,ortheycanbethoughtofasastreamofmasslessparticles,eachtravelinginawavelikepatternandmovingatthespeedoflight.Eachmasslessparticlecontainsacertainamount(orbundle)ofenergy.Eachbundleofenergyiscalledaphoton.Ifspectralbandsaregroupedaccordingtoenergyperphoton,weobtainthespectrumshowninfig.below,rangingfromgammarays(highestenergy)atoneendtoradiowaves(lowestenergy)attheother.ThebandsareshownshadedtoconveythefactthatbandsoftheEMspectrumarenotdistinctbutrathertransitionsmoothlyfromonetotheother.Imageacquisitionisthefirstprocess.Notethatacquisitioncouldbeassimpleasbeinggivenanimagethatisalreadyindigitalform.Generally,theimageacquisitionstageinvolvespreprocessing,suchasscaling.Imageenhancementisamongthesimplestandmostappealingareasofdigitalimageprocessing.Basically,theideabehindenhancementtechniquesistobringoutdetailthatisobscured,orsimplytohighlightcertainfeaturesofinterestinanimage.Afamiliarexampleofenhancementiswhenweincreasethecontrastofanimagebecause“itlooksbetter.”Itisimportanttokeepinmindthatenhancementisaverysubjectiveareaofimageprocessing.Imagerestorationisanareathatalsodealswithimprovingtheappearanceofanimage.However,unlikeenhancement,whichissubjective,imagerestorationisobjective,inthesensethatrestorationtechniquestendtobebasedonmathematicalorprobabilisticmodelsofimagedegradation.Enhancement,ontheotherhand,isbasedonhumansubjectivepreferencesregardingwhatconstitutesa“good”enhancementresult.ColorimageprocessingisanareathathasbeengaininginimportancebecauseofthesignificantincreaseintheuseofdigitalimagesovertheInternet.Itcoversanumberoffundamentalconceptsincolormodelsandbasiccolorprocessinginadigitaldomain.Colorisusedalsoinlaterchaptersasthebasisforextractingfeaturesofinterestinanimage.Waveletsarethefoundationforrepresentingimagesinvariousdegreesofresolution.Inparticular,thismaterialisusedinthisbookforimagedatacompressionandforpyramidalrepresentation,inwhichimagesaresubdividedsuccessivelyintosmallerregions.Compression,asthenameimplies,dealswithtechniquesforreducingthestoragerequiredsavinganimage,orthebandwidthrequiredtransmittingit.Althoughstoragetechnologyhasimprovedsignificantlyoverthepastdecade,thesamecannotbesaidfortransmissioncapacity.ThisistrueparticularlyinusesoftheInternet,whicharecharacterizedbysignificantpictorialcontent.Imagecompressionisfamiliar(perhapsinadvertently)tomostusersofcomputersintheformofimagefileextensions,suchasthejpgfileextensionusedintheJPEG(JointPhotographicExpertsGroup)imagecompressionstandard.Morphologicalprocessingdealswithtoolsforextractingimagecomponentsthatareusefulintherepresentationanddescriptionofshape.Thematerialinthischapterbeginsatransitionfromprocessesthatoutputimagestoprocessesthatoutputimageattributes.Segmentationprocedurespartitionanimageintoitsconstituentpartsorobjects.Ingeneral,autonomoussegmentationisoneofthemostdifficulttasksindigitalimageprocessing.Aruggedsegmentationprocedurebringstheprocessalongwaytowardsuccessfulsolutionofimagingproblemsthatrequireobjectstobeidentifiedindividually.Ontheotherhand,weakorerraticsegmentationalgorithmsalmostalwaysguaranteeeventualfailure.Ingeneral,themoreaccuratethesegmentation,themorelikelyrecognitionistosucceed.Representationanddescriptionalmostalwaysfollowtheoutputofasegmentationstage,whichusuallyisrawpixeldata,constitutingeitherthebound-rayofaregion(i.e.,thesetofpixelsseparatingoneimageregionfromanother)orallthepointsintheregionitself.Ineithercase,convertingthedatatoaformsuitableforcomputerprocessingisnecessary.Thefirstdecisionthatmustbemadeiswhetherthedatashouldberepresentedasaboundaryorasacompleteregion.Boundaryrepresentationisappropriatewhenthefocusisonexternalshapecharacteristics,suchascornersandinflections.Regionalrepresentationisappropriatewhenthefocusisoninternalproperties,suchastextureorskeletalshape.Insomeapplications,theserepresentationscomplementeachother.Choosingarepresentationisonlypartofthesolutionfortrans-formingrawdataintoaformsuitableforsubsequentcomputerprocessing.Amethodmustalsobespecifiedfordescribingthedatasothatfeaturesofinterestarehighlighted.Description,alsocalledfeatureselection,dealswithextractingattributesthatresultinsomequantitativeinformationofinterestorarebasicfordifferentiatingoneclassofobjectsfromanother.Recognitionistheprocessthatassignsalabel(e.g.,“vehicle”)toanobjectbasedonitsdescriptors.Asdetailedbefore,weconcludeourcoverageofdigitalimageprocessingwiththedevelopmentofmethodsforrecognitionofindividualobjects.SofarwehavesaidnothingabouttheneedforpriorknowledgeorabouttheinteractionbetweentheknowledgebaseandtheprocessingmodulesinFig2above.Knowledgeaboutaproblemdomainiscodedintoanimageprocessingsystemintheformofaknowledgedatabase.Thisknowledgemaybeasslim-pleaasdetailingregionsofanimagewheretheinformationofinterestisknowntobelocated,thuslimitingthesearchthathastobeconductedinseekingthatinformation.Theknowledgebasealsocanbequitecomplex,suchasaninterrelatedlistofallmajorpossibledefectsinamaterialsinspectionproblemoranimagedatabasecontaininghigh-resolutionsatelliteimagesofaregionincon-lectionwithchange-detectionapplications.Inadditiontoguidingtheoperationofeachprocessingmodule,theknowledgebasea
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冬季安全生产工作总结
- 儿童保健的标准与技术指南
- 电器节能技术创新
- 无人机应用技术1.20.穿越机组装介绍(实操)
- 江苏省泰州市2025年高一化学第二学期期末达标检测模拟试题含解析
- 四川省重点中学2025届高一化学第二学期期末统考试题含解析
- 知识讲解奇葩题目及答案
- 政治奇葩法律题目及答案
- 2025至2030年中国配料控制显示器行业投资前景及策略咨询报告
- 2025至2030年中国折叠式十字扳手行业投资前景及策略咨询报告
- 2024年上海高中学业水平合格性考试历史试卷真题(含答案)
- 小学一年级数学下册应用题100道
- 安徽省马鞍山市2023-2024学年高一下学期期末教学质量监测化学试卷(含解析)
- 反诈骗(企业员工)讲座培训课件
- T/CBMCA 019-2021医用洁净室装饰材料技术标准
- 2025-2030中国微晶纤维素市场深度评估与需求潜力分析研究报告
- 2025年社会调查方法与实践考试试题及答案
- 房东合法免责协议书
- JJG(交通) 072-2024 燃烧法沥青含量测试仪
- 外墙蜘蛛人合同协议
- S700k提速道岔日常养护作业铁道信号综合实训48课件
评论
0/150
提交评论