




已阅读5页,还剩33页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
J.-P.MerletINRIASophia-Antipolis,FranceSolvingtheForwardKinematicsofaGough-TypeParallelManipulatorwithIntervalAnalysisAbstractWeconsiderinthispaperaGough-typeparallelrobotandwepresentanefficientalgorithmbasedonintervalanalysisthatallowsustosolvetheforwardkinematics,i.e.,todetermineallthepossibleposesoftheplatformforgivenjointcoordinates.Thisalgorithmisnumer-icallyrobustasnumericalround-offerrorsaretakenintoaccount;theprovidedsolutionsareeitherexactinthesensethatitwillbepos-sibletorefinethemuptoanarbitraryaccuracyortheyareflaggedonlyasa“possible”solutionaseitherthenumericalaccuracyofthecomputationdoesnotallowustoguaranteethemortherobotisinasingularconfiguration.Itallowsustotakeintoaccountphysicalandtechnologicalconstraintsontherobot(forexample,limitedmotionofthepassivejoints).Anotheradvantageisthat,assumingrealis-ticconstraintsonthevelocityoftherobot,itiscompetitiveintermofcomputationtimewithareal-timealgorithmsuchastheNewtonscheme,whilebeingsafer.KEYWORDSforwardkinematics,parallelrobot1.Introduction1.1.RobotGeometryInthispaperweconsiderasix-degrees-of-freedom(6-DOF)parallelmanipulator(Figure1)consistingofafixedbaseplateandamobileplateconnectedbysixextensiblelinks.Legiisattachedtothebasewithaball-and-socketjointwhosecenterisAiwhileitisattachedtothemovingplatformwithauniversaljointwhosecenterisBi.Thelengthofthelegs(thedistancebetweenAiandBi)willbedenotedbyi.Areferenceframe(A1,x,y,z)isattachedtothebaseandamobileframe(B1,xr,yr,zr)isattachedtothemovingplatform.TheInternationalJournalofRoboticsResearchVol.23,No.3,March2004,pp.221-235,DOI:10.1177/02783649040398062004SagePublications1.2.TheForwardKinematicsProblemTheforwardkinematics(FK)problemmaybestatedas:be-inggiventhesixleglengths,findthecurrentposeScoftheplatform,i.e.,theposeoftherobotwhentheleglengthshavebeenmeasured.Althoughitmayseemthatthisproblemhasbeenaddressedinnumerousworks,ithasneverbeenfullysolved.Indeed,aswewillsee,allauthorshaveaddressedasomewhatdifferent(althoughrelated)problemP:beinggiventhesixleglengths,findallthenpossibleposesS1=S1,.,Snoftheplat-form.ItmaybeacceptedthatsolvingPisthefirststepforsolvingtheFKproblemassoonassomemethodallowsustodeterminewhichsolutionSjinthesolutionsetofPisthecurrentposeScoftherobot.Unfortunately,nosuchmethodisknowntodate,evenforplanarparallelrobots.ThispaperwillalsoaddressthePproblem,althoughwewillbeabletotakeintoaccount,duringthecalculation,realisticconstraintsontherobotmotionthatmayreducethenumberofsolutions.ProblemPisnowconsideredasaclassicalprobleminkinematicsandisalsousedinothercommunitiesasadiffi-cultbenchmark.Raghavan(1991)andRongaandVust(1992)werethefirsttoestablishthattheremaybeupto40complexandrealsolutionstoPwhileHusty(1996)succeededinpro-vidingaunivariatepolynomialofdegree40thatallowsustodetermineallthesolutions.Dietmaier(1998)exhibitedcon-figurationsforwhichtherewere40realsolutionposes.1.3.SolvingMethodfortheForwardKinematicsThemethodstraditionallyusedtosolvePmaybeclassifiedas:theeliminationmethod;thecontinuationmethod;theGrebnerbasismethod.221222THEINTERNATIONALJOURNALOFROBOTICSRESEARCH/March2004A1A2A3A4A5A6B1B2B3B4B5B6COxyzyrzrxrFig.1.Goughplatform.Allthesemethodsassumeanalgebraicformulationoftheproblemwithnunknowns,x1,.,xn.Thesemethodswillbedescribedintuitivelywithouttryingtoberigorous.Intheeliminationmethod(Innocenti2001;LeeandShim2001a)eachequationofthesystemisexpressedasalinearequationintermofmonomialsproducttextxi11.xinn(includingtheconstantmonomial1)inwhichoneoftheunknowns,xk,issupposedtobeconstant(i.e.,thecoefficientsoftheequationsarefunctionsofxk).Additionalequationsareobtainedbymul-tiplyingtheinitialequationsbyamonomialuntilweobtainasquaresystemoflinearequationsthatcanbeexpressedinmatrixformasA(xk)X=0(1)whereXisasetofmonomialsincludingtheconstantmono-mial1.Duetothisconstantmonomial,theabovesystemhasasolutiononlyif|A(xk)|=0,whichisaunivariatepolynomialPeinxk.Aftersolvingthispolynomial,abacktrackmecha-nismallowsustodeterminealltheotherunknownsforeachrootofthepolynomialPe.Themainweaknessofthismethodisthecalculationof|A|;usuallyAisaratherlargematrixanditsdeterminantcannotbecalculatedinclosedform.Mostauthorsproposetouseanumericalmethodtoevaluatethecoefficientsofthepolynomial|A|;thedeterminant(ofordern),whichisalinearfunctionofthepolynomialcoefficients,iscalculatednumericallyforn+1valuesofxkandthereforethecoefficientscanbeobtainedbysolvingasystemofn+1linearequations.However,suchaprocedureisnumericallyunstableandhencethereisnoguaranteeofthecorrectnessofthesolutions.AneliminationmethodhasbeenusedbyHusty(1996)toobtaina40th-orderpolynomialbutusingonlysymboliccom-putationandacarefuleliminationprocessthatguaranteethatweobtaintheexactpolynomialcoefficients;unfortunately,thisprocedureseemstobedifficulttoautomate.TosolveasystemofequationsF(X)=0,thecontinua-tionmethod(Raghavan1991;SreenivasanandNanua1992;LiuandYang1995;Wampler1996)usesanauxiliarysystemG(X)=F+(1)(F1F)=0,whereF1isasystem“similar”toF,inthesensethatithasatleastthesamenum-berofsolutionsasF,ofwhichallthesolutionsareknownandisascalar.Whenisequalto0,G=F1andcon-sequentlythesolutionsofGareknown.Thesesolutionsareusedasaninitialguesstosolve,usingaNewtonscheme,anewversionofGobtainedfor=epsilon1whereepsilon1hasasmallvalue.Thisprocessisrepeatedfor=2epsilon1usingthesolutionsofthepreviousrunasaninitialguessandsoonuntil=1forwhichG=F.Inotherwords,startingfromasystemwithknownsolutionswefollowthesolutionbranchesofasys-temthatslowlyevolvestowardF.ThemainweaknessofthisapproachisthatitisnecessarytofollowalargenumberofbranchestofindallthesolutionsofF.Inourcase,F1hastohaveatleast40solutionsandhence40brancheswillbefol-lowed,someofwhichwillvanishiftheFKproblemhaslessthan40solutions.Furthermore,numericalrobustnessisdiffi-culttoensureifasingularityisencounteredwhenfollowingthebranches.IntheGrebnerbasisapproach,thepropertyisusedthatthesolutionsofanyalgebraicsystemFarealsosolutionsofvariousothersystemsofequationsinsomeotherunknownsyi.Amongallthesesystems,oneofthemhasthepropertyofbeingtriangular,i.e.,thesystemhasafirstequationinoneunknowny1,thesecondequationhasonlyy1,y2asunknownsandsoon,untilthelastequationwithunknownsy1,.,yn.Henceallthesolutionsofthissystemcanbeobtainedbysolvinginsequencethefirstequation,thenthesecondandsoon.SuchatriangularsystemcanbeobtainedbyusingtheBuchbergeralgorithm(Lazard1992;FaugreandLazard1995).Althoughthismethodiscurrentlythefastesttosolveinaguaranteedmanner,theFKproblem(usingtheFGbandtheRealSolvingalgorithmsofFaugre1andRouillier(1995,2003)thisapproachcanonlybeusedwhenthecoefficientsoftheequationsarerational(inwhichcasetheresultsarecertified)anditsimplementationinvolvestheuseoflargeintegers.2.SolvingwithIntervalAnalysis2.1.IntervalAnalysisIntervalanalysisisanalternativenumericalmethodthatcanbeusedtodetermineallthesolutionstoasystemofequationsandinequalitiessystemswithinagivensearchspace.1.Seehttp:/www-calfor.lip6.fr/jcf/index.html.Merlet/SolvingtheForwardKinematics223AnintervalXisdefinedasthesetofrealnumbersxver-ifyingxxx.The“width”w(X)ofanintervalXisthequantityxxwhilethe“mid-point”M(X)oftheintervalis(x+x)/2.The“mignitude”(“magnitude”)ofanintervalXisthesmallest(highest)valueof|x|,|x|.A“pointinterval”Xisobtainedifx=x.A“box”isatupleofintervalsanditswidthisdefinedasthelargestwidthofitsintervalmembers,whileitscenterisdefinedasthepointwhosecoordinatesarethemid-pointoftheranges.Letfbeareal-valuedfunctionofnunknownsX=x1,.,xn.AnintervalevaluationFoffforgivenrangesX1,.,XnfortheunknownsisanintervalYsuchthatX=x1,.,xnX=X1,.,XnYf(X)Y.(2)Inotherwords,Y,YarelowerandupperboundsforthevaluesoffwhentheunknownsarerestrictedtoliewithintheboxX.Therearenumerouswaystocalculateanintervalevalua-tionofafunction(Hansen1992;Moore1979).Thesimplestisthenaturalevaluationinwhichallthemathematicalopera-torsinfaresubstitutedbytheirintervalequivalenttoobtainF.Forexample,theclassicaladditionissubstitutedbyanintervaladditiondefinedasX1+X2=x1+x2,x1+x2.Intervalequivalentsexistforalltheclassicalmathematicalop-eratorsandhenceintervalarithmeticsallowsustocalculateanintervalevaluationformostnon-linearexpressions,whetheralgebraicornot.Forexample,iff(x)=x+sin(x),thentheintervalevaluationoffforx1.1,2canbecalculatedasF(1.1,2)=1.1,2+sin(1.1,2)=1.1,2+0.8912,1=1.9912,3.Intervalevaluationexhibitsinterestingproperties,asfollows.1.If0negationslashF(X),thenthereisnovalueoftheunknownsintheboxXsuchthatf(X)=0.Inotherwords,theequationf(X)hasnorootintheboxX.2.TheboundsoftheintervalevaluationFusuallyoveres-timatetheminimumandmaximumofthefunctionovertheboxX,buttheboundsofFareexactlythemini-mumandmaximumifthereisonlyoneoccurrenceofeachunknowninf(PropertyA).3.Intervalarithmeticscanbeimplementedtakingintoac-countround-offerrors.Forexample,theintervaleval-uationoff=x/3whenXisthepointinterval1,1willbetheinterval1,2where1,2aretheclosestfloatingpointnumbers,respectivelylowerandgreaterthan0.3333.Therearenumerousintervalarith-meticspackagesimplementingthisproperty.OneofthemostwellknownisBIAS/Profil2usingtheCdoubleforintervalrepresentation.However,apromisingnewpackageisMPFI(RevolandRouillier2002),basedonthemulti-precisionsoftwareMPFRdevelopedbytheSPACESproject3,inwhichtheintervalisrepresentedbyanumberwithanarbitrarynumberofdigits.2.2.BasicSolvingAlgorithmIntervalanalysisbasedalgorithmshavebeenusedinroboticsforsolvingtheinversekinematicofserialrobots(Kiyoharu,Ohara,andHiromasa2001;Tagawaetal.1999)andparallelrobotsFK(Castellet1998;Didrit,Petitot,andWalter1998;Jaulinetal.2001),workspaceanalysis(Chablat,Wenger,andMerlet2002;Merlet1999),singularitydetection(MerletandDaney2001),evaluatingthereliabilityofparallelrobots(Car-rerasetal.1999),optimalplacementofrobots(Tagawaetal.2001),mobilerobotlocalization(BouvetandGarcia2001)andtrajectoryplanning(PiazziandVisioli1997).However,intervalanalysisisamorecomplexmethodthanmaybethoughtatafirstglanceandwewillpresentinthispapervariousimprovementsthathaveadrasticinfluenceontheefficiency.Westartwiththemostbasicsolvingalgorithmthatmaybederivedfromthepropertiesofintervalarithmetics.LetB0=X1,.,Xnbeaboxandf=f1(X),.,fn(X)asetofequationstobesolvedwithinB0.AlistLwillcontainasetofboxesandinitiallyL=B0.Anindexi,initializedto0,willindicatewhichboxBiinLiscurrentlybeingprocessed,whilenwilldenotethenumberofboxesinthelist.TheintervalevaluationofthefunctionfjfortheboxBiwillbedenotedFj(Bi).Athresholdepsilon1willbeusedand,ifthewidthoftheintervalevaluationofallthefunctionsforaboxBiislowerthanepsilon1andincludes0,thenBiwillbeconsideredasasolutionofthesystem.Thealgorithmproceedalongthefollowingsteps.1.Ifin,thenreturntothesolutionlist.2.IfatleastoneFj(Bi)existssuchthat0negationslashFj(Bi),theni=i+1andgoto1.3.Ifj1,n0Fj(Bi)andw(Fj(Bi)epsilon1,thenstoreBiinthesolutionlist,i=i+1andgoto1.4.SelecttheunknownkwhoseintervalhasthelargestwidthinBi.Bisectitsintervalinthemid-dlepointandcreatetwonewboxesfromBiasX1,.,Xk1,Xk,(Xk+Xk)/2,.,XnandX1,.,Xk1,(Xk+Xk)/2,Xk,.,Xn.StorethesetwoboxesasBn+1,Bn+2,n=n+2,i=i+1andgoto1.2.http:/www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.3..224THEINTERNATIONALJOURNALOFROBOTICSRESEARCH/March2004Notethatthestoragemethodusedherefortheboxesisnotveryefficientasfarasmemorymanagementisconcerned.AfirstimprovementistosubstitutetheboxBibyoneofthetwoboxesthatarecreatedwhenbisectingit.Asecondimprovement,denotedadepthfirststoragemode,istostorethesecondboxatpositioni+1afterashiftoftheexistingboxes.ThisensuresthatthewidthofBiisalwaysdecreasinguntileithertheboxiseliminatedorasolutionisfound.Inthismode,forasystemofnequationsinnunknowns,thewidthofBiisatleastdividedby2afternbisection.IfthewidthoftheinitialboxB0isw0thenumberNofboxesthatareneededissuchthat2(K/n)=w0/epsilon1andhenceN=nlog(w0/epsilon1)/log(2).Forexample,ifn=9,w0=10andepsilon1=106,weobtainthatthenumberofboxesofLshouldbe210(towhichwemustaddthememorytostorethesolutions).Hence,evenwithahighaccuracyforthesolutionandalargeinitialsearchspacethenecessarymemorystorageissmall.Asamatteroffact,thedescribedalgorithmwillusuallynotbeveryefficient,buttherearenumerouswaystoimproveitaswillbeshownlateron.However,notethatthereisaneasywaytoimprovethecomputationtimeofthebasicalgorithm;indeed,wemaynoticethateachboxinLissubmittedtoaprocessingthatdoesnotdependupontheotherboxes.Henceitispossibletoimplementthealgorithminadistributedman-ner.Amastercomputerwillsendtonslavecomputersthefirstnboxesinthelist.Theseslavecomputerswillindividu-allyperformafewiterationsofthebasicalgorithmandwillsendbacktothemastertheremainingboxesinitsLlist(ifany)andthesolutionsithasfound(ifany).ThemasterwillmanageagloballistLandperformafewiterationsofthebasicalgorithmifalltheslavesarebusy.WewilldiscusstheefficiencyofthedistributedimplementationintheExamplesections.3.EquationsfortheForwardKinematicsLetAiandBibetheattachmentpointsofthelegionthebaseandontheplatform,respectively.ThecoordinatesofAiinthereferenceframewillbedenotedxai,yai,zaiwhilethecoordinatesofBiinthesameframearexi,yi,zi.Withoutlackofgeneralitywemaychoosexa1=ya1=za1=0andya2=za2=0.Notethatforagivenrobotandgivenleglengthsitisalwayspossibletochangethenumberingoftheleglengthsandwewillseethatthishasaninfluenceonthecomputationtimeofouralgorithm.Therearenumerouswaystowritetheequationsoftheinversekinematics(whichconstitutethesystemofequationstobesolvedfortheFKproblem)accordingtotheparametersthatareusedtorepresenttheposeoftheplatform.InthispaperaposeoftheplatformwillbedefinedeitherbythecoordinatesofthethreepointsB1,B2,B3(assumedtobenotcollinear;suchatripletcanalwaysbefoundotherwisetherobotisalwayssingular)iftheplatformisplanar,orbythecoordinatesofthefourpointsB1,B2,B3,B4inthegeneralcase.Thechosenpointswillbedenotedthereferencepointsofthesystem,andtheassociatedlegsthereferencelegs.Ifm,m3,4pointsareusedfordefiningtheposeoftheplatformthenforanyjinm+1,6wehaveOBj=k=msummationdisplay
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 关注信息处理技术员考试试题
- 材料力学与智能材料性能监测重点基础知识点
- 材料疲劳裂纹萌生机理研究重点基础知识点
- 检修火灾应急演练预案(3篇)
- 化验室初期火灾应急预案(3篇)
- 经济政策与社会治理的良性互动试题及答案
- 高考数学整体复习安排与试题及答案
- 边防火灾应急预案(3篇)
- 地铁区间火灾的应急预案(3篇)
- 解决代数难题的思路试题及答案
- 2025年中远海运限公司招聘自考难、易点模拟试卷(共500题附带答案详解)
- T-SUCCA 01-2024 营运车辆停运损失鉴定评估规范
- 教育消费行为研究-深度研究
- T-ZSA 232-2024 特种巡逻机器人通.用技术要求
- 工贸企业安全生产台账资料
- 2025年离婚协议书范本(无争议)
- 第12讲 反比例函数的图象、性质及应用 课件中考数学复习
- 2025中国东方航空技术限公司全球校园招聘高频重点模拟试卷提升(共500题附带答案详解)
- 北森行测测评题库2022
- 生物信息学基础讲座课件
- 《ESD基础知识培训》课件
评论
0/150
提交评论