翻译-电力系统的电压稳定性研究_第1页
翻译-电力系统的电压稳定性研究_第2页
翻译-电力系统的电压稳定性研究_第3页
翻译-电力系统的电压稳定性研究_第4页
翻译-电力系统的电压稳定性研究_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

本科毕业设计(论文)外文翻译专业电气及其自动化所在学院电子信息工程学院二零一二年六月ITERATIVESLIDINGMODECONTROLABSTRACTITERATIVELEARNINGCONTROLILCMETHODSAREDESCRIBEDANDAPPLIEDEVERINCREASINGLYASPOWERFULTOOLSTOCONTROLDYNAMICSNOWADAYSILCSMETHODSINMOSTSTUDIESAREDESCRIBEDASBASEDONREPETITIVEPROCESSFROMTHEBEGINNINGTOTHEENDOFPROCESSORASAKINDOFREPETITIVECONTROLOURNEWLYDESIGNEDCONTROLLERSBASEDONAPARTICULARCASEOFITERATIVELEARNINGCONTROLRADICALLYDIFFERFROMCONVENTIONALMETHODSINATTEMPTINGTOSTABILIZEACLASSOFNONLINEARSYSTEMSINTHISPAPERTWOKINDSOFILCMETHODAREINTRODUCEDINTWOSEPARATESECTIONSINTHEFIRST,OURNEWLYDESIGNEDMETHODSATISFIESTHECONDITIONOFALYAPUNOVSTABILITYTHEOREMINACLASSOFNONLINEARSYSTEMSINWHICHTHEIRSTRUCTURESHAVETHELIPSCHITZPROPERTYINTHESECOND,BYFREEZINGTHETIMEANDMOVINGTOANEWVIRTUALAXIS,CALLEDTHEINDEXAXIS,THISNEWLYDESIGNEDMETHODTRIESTOFINDTHEBESTVALUEFORCONTROLATTHISTIMESTEPANDCANBEUSEDINTWOMODES,ONLINEANDOFFLINEINBOTHMETHODS,BYSATISFYINGTHECONVERGENCECONDITIONOFOURDESIGNEDILC,CLOSEDLOOPSTABILITYISOBTAINEDAUTOMATICALLYKEYWORDSITERATIVELEARNINGCONTROL,NONLINEARSYSTEMS,LYAPUNOVSTABILITYTHEOREMSECTIONAANEWAPPROACHTOSTABILIZEACLASSOFNONLINEARSYSTEMSBYILCMETHODINRECENTDECADES,RESEARCHERSHAVEBEENFOCUSINGEFFORTSONLEARNINGCONTROLSYSTEMS,SOTHATTHISKINDOFCONTROLTECHNIQUEISABLETOIMPROVESYSTEMPERFORMANCEEFFICIENTLYMANYSCIENTISTSWORKINGONITERATIVELEARNINGCONTROLILCHAVEPRESENTEDDIFFERENTLEARNINGCONTROLSCHEMESAMONGTHESE,FORTRACKINGCONTROL,ISTHEITERATIVELEARNINGCONTROLWHICHWASORIGINALLYINTRODUCEDBYARIMOTOIN19841,2THEMAINPURPOSEOFILCISTOFINDACONTROLINPUTITERATIVELY,RESULTINGINTHEPLANTSABILITYTOTRACKTHEGIVENREFERENCESIGNALWITHANOUTPUTTRAJECTORYOVERAFINITETIMEINTERVALCOMMONILCMETHODSUSETHEREPETITIVENATUREOFTHEPROCESSTOIMPROVETHETRACKINGPERFORMANCEPROGRESSIVELYBUTFROMANEWVIEWPOINTONILC,WHICHISREPRESENTEDINTHISPAPER,STABILITYOFACLASSOFNONLINEARSYSTEMSWOULDBEOBTAINEDA1INTRODUCTIONINRECENTDECADES,RESEARCHERSHAVEBEENFOCUSINGEFFORTSONLEARNINGCONTROLSYSTEMS,SOTHATTHISKINDOFCONTROLTECHNIQUEISABLETOIMPROVESYSTEMPERFORMANCEEFFICIENTLYMANYSCIENTISTSWORKINGONITERATIVELEARNINGCONTROLILCHAVEPRESENTEDDIFFERENTLEARNINGCONTROLSCHEMESAMONGTHESE,FORTRACKINGCONTROL,ISTHEITERATIVELEARNINGCONTROLWHICHWASORIGINALLYINTRODUCEDBYARIMOTOIN19841,2THEMAINPURPOSEOFILCISTOFINDACONTROLINPUTITERATIVELY,RESULTINGINTHEPLANTSABILITYTOTRACKTHEGIVENREFERENCESIGNALWITHANOUTPUTTRAJECTORYOVERAFINITETIMEINTERVALCOMMONILCMETHODSUSETHEREPETITIVENATUREOFTHEPROCESSTOIMPROVETHETRACKINGPERFORMANCEPROGRESSIVELYBUTFROMANEWVIEWPOINTONILC,WHICHISREPRESENTEDINTHISPAPER,STABILITYOFACLASSOFNONLINEARSYSTEMSWOULDBEOBTAINEDINSECTIONA2,THEPROBLEMFORMULATIONISPRESENTEDSECTIONA3PRESENTSOURCONTROLLERDESIGNEDMETHODSECTIONA4DISCUSSESOURRESULTSBYSHOWINGAPPLICATIONOFOURALGORITHMTOSOMEDYNAMICSA2PROBLEMFORMULATIONCONSIDERTHESYSTEM1WHEREAREPIECEWISECONTINUOUSINT,ANDFISLOCALLYLIPSCHITZINXOND0,DISAMRNRDOMAINTHATCONTAINSTHEORIGINX0SUPPOSINGTHESYSTEM1ISPERTURBEDASBELOW(2)THEPERTURBATIONCOULDRESULTFROMMODELING,AGING,ORUNCERTAINTIESANDDISTURBANCESWHICHEXISTINANYREALISTICPROBLEMINATYPICALSITUATION,THOUGHTHEPERTURBATIONISNOTKNOWN,SOMEINFORMATIONSUCHASANUPPERBOUNDISAVAILABLEHERETHEPERTURBATIONISREPRESENTEDASANADDITIVETERMONRIGHTHANDSIDEOFTHESTATEEQUATIONUNCERTAINTIESWHICHDONTCHANGETHESYSTEMORDERCANALWAYSBEREPRESENTEDINTHISFORMINGENERALIFAPERTURBATIONISCONSIDEREDASHX,T,ITCANBECLASSIFIEDINTWOTYPESASBELOWHX,T0ISAVANISHINGPERTURBATION,ANDHX,T0ISCALLEDANONVANISHINGPERTURBATIONINTHISPAPER,VANISHINGPERTURBATIONSHAVEBEENINVESTIGATEDFORTHEFUNCTIONGWHEREASTHEPERTURBATIONOFFISCONSIDEREDTOBELIPSCHITZITISNECESSARYTOFULFILLTHESEFOURASSUMPTIONS1THEPERTURBATIONOFGISVANISHINGG0,T0,ANDITSUPPERBOUNDISKNOWNASGX,T2FISPIECEWISECONTINUOUSINTIME,ANDLOCALLYLIPSCHITZIND0,D,IEFX,TNRF0,TMX3F0,T0X0ISANEQUILIBRIUMPOINTOFTHEUNPERTURBEDSYSTEM4THEPERTURBATIONOFF,FX,T,SATISFIESTHELIPSCHITZCONDITIONA3CONTROLLERDESIGNMETHODFORACLOSEDLOOPSYSTEM,THESTATESPACEEQUATIONISGIVENBY1USUALLYSTABILIZATIONOFTHECLOSEDLOOPSYSTEMCANBEPREPAREDBYASUITABLECONTROLLERUX,TASAFUNCTIONOFSTATEXANDTIMETFORSUCHASYSTEM1,BYTHETHEOREMDISCUSSEDBELOW,WECLAIMTHATASTABILIZERINTHEFORMOFAFEEDBACKCONTROLANDALYAPUNOVFUNCTIONFORSTABILIZINGTHESYSTEMAREFOUNDTHEOREMCONSIDERTHECLOSEDLOOPSYSTEM3WITHTHEFOLLOWINGCONTROLLERUKX3WHEREKISAMATRIXWHICHGOVERNEDBYTHEFOLLOWINGLAWMIGX,TK4DQWHEREMISBOUNDOFTHELIPSCHITZCONDITION,IISAUNITMATRIXWITHPROPERDIMENSION,ANDISDQADESIREDNEGATIVEDEFINITEMATRIXWHICHISSELECTEDBYTHEDESIGNERBASEDONTHERATEOFDESCENDINGOFTHELYAPUNOVCRITERIONTHEN3WILLBEASYMPTOTICALLYSTABLEAROUNDTHEORIGINPROOFBYDEFININGTHELYAPUNOVFUNCTION,ASBELOWANDFOLLOWINGTHEPROOFPROCEDURE,ASUITABLECONTROLLERWILLBEDERIVEDASFOLLOWBYUSINGTHESCHWARTZINEQUALITYWEHAVEANDBYIMPLEMENTINGTHELIPSCHITZCONDITIONTHISCHANGESTONOWBYSELECTINGTHECONTROLLERASUKX,THEFOLLOWINGRELATIONISACHIEVEDTHEREFORETHEDESIREDNEGATIVEDEFINITEMATRIXISDQSINCETHEKMATRIXCANBEOBTAINEDFROMTHEFOLLOWINGCASESASBELOWCASE1GISANINVERTIBLEMATRIXINTHISCASEKISOBTAINEDSIMPLYBYTHEFOLLOWINGRELATIONTESTA6CASE2GISAPSEUDOINVERTIBLEMATRIXHEREKCANBEEXPRESSEDBYTESTA7OURALGORITHMISALSORELIABLEFORSYSTEMS1INWHICHTHEINPUTANDOUTPUTSNUMBESAREDIFFERENTIFGX,TISNOTINVERTIBLEORPSEUDOINVERTIBLE,THISMEANSTHATTHEINPUTSINTERACTINTHISCASE,THECONTROLLABILITYPROBLEMMAYARISEATTHISTIMETHEILCMETHODISMOREEFFECTIVECOROLLARYINTHEGENERALCASE,GHASNMDIMENSIONWHERENISTHENUMBEROFSTATESANDMISTHENUMBEROFINPUTSINTHISCASEITERATIVELEARNINGCONTROLCANBEUSEDTOFINDTHEDESIREDKMNMATRIXWHICHSATISFIESRELATION9BYTHEFOLLOWINGMETHODTESTA1WHEREIREPRESENTSTHEITERATIONINDEXANDISTHELEARNINGFACTORMATRIXANDISGIVENBYNMIEITSHOULDBECONSIDEREDTHATTHISTYPEOFCONTROLISUSEDWHENTHESYSTEMANDTHECONTROLLERHAVEDIFFERENTTIMERATESOFPROCESSING,MEANINGTHATTHEDESIREDCONTROLLERWORKSMUCHFASTERTHANTHEPROCESS,POSSIBLYBYUSINGMODERNHIGHRATESOFTWAREREMARKA1ROBUSTNESSWITHRESPECTTOPERTURBATIONSINFANDGCONSIDERFANDGPERTURBEDBYTHETERMSFANDGSUPPOSETHEPERTURBATIONOFFISVANISHING,WHICHSATISFIESTHELINEARGROWTHBOUNDWHEREISANONNEGATIVECONSTANTALSOFORTHEPERTURBATIONOFG,ITISSUPPOSEDTHATITSUPPERBOUNDISKNOWN,THEREFOREITCANBEWRITTENASWHEREISAPOSITIVENUMBER迭代滑模控制摘要如今,迭代学习控制(ILC)方法的描述和应用日益成为强大的工具用来控制动力学。迭代学习控制方法在大多数研究方法的基础上重复着从开始到结束的过程,或作为一种描述重复控制。基于特定情况下的迭代学习控制,我们新设计的控制器从根本上不同于传统的方法,它是在尝试一类非线性系统的稳定。本文介绍两种迭代学习控制方法在这两个独立的部分。第一,我们新的设计方法满足在一类非线性系统中其结构有李氏的李雅普诺夫稳定性定理的条件。第二,通过冻结的时间和移动到一个新的虚拟轴(称为指数轴),在这个新的设计方法中,试图找到最好能控制在这个时间步长值上并可用于两种模式下,上线和离线。这两种方法都可以满足我们设计的迭代学习控制的衔接条件,所以闭环稳定自动获得。关键词迭代学习控制,非线性系统,李雅普诺夫稳定性定理第一部分一种新方法稳定的一类非线性系统的迭代学习控制方法11介绍近几十年来,研究人员一直集中在学习控制系统的努力中,使这种控制技术能够有效地提高系统性能。许多致力于迭代学习控制(ILC)工作的科学家们已经提出了不同的学习控制方案。其中,跟踪控制,最初是由ARIMOTO在1984年推出的一种迭代学习控制。迭代学习控制的主要目的是为了找到一个迭代控制输入,导致了设备在有限的时间间隔内跟踪给定的输出轨迹参考信号的能力。常见的迭代学习控制方法采用了过程中的重复性质来逐步提高跟踪性能。但是,从本文提到的一种新的迭代学习控制观点来看,可以获得这一类非线性系统的稳定性。12问题制定考虑到系统1(2)由模型、老化或在任何现实中存在的不确定性或干扰都可能导致的扰动问题。在一个典型的情况下,虽然不知道扰动,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论