




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
DOI10.1007/s00170-004-2087-6ORIGINALARTICLEIntJAdvManufTechnol(2005)26:965969Gwo-LianqChernStudyonanewturningmethodtosimulateorthogonalcuttingandtoverifyanedgebreakoutmodelReceived:01September2003/Accepted:13January2004/Publishedonline:12January2005Springer-VerlagLondonLimited2005AbstractInordertoverifyanedgebreakoutpredictingmodelinorthogonalcutting,whichwasproposedbytheauthorspreviouswork,orthogonalmachiningexperimentsmustbeconducted.ACNClathewasutilizedtocarryoutsimulatedorthogonalcut-tings.Theworkpiece,madeofaluminumalloyAl6061-T6,isacylindricalbarwithsquarethreadsandaxial/radialgrooves.Threadingandgroovinginsertswithaflatcuttingedgewerechosenasthecuttingtools.Theexperimentaldatawereusedtoverifythepreviouslydevelopededgebreakoutmodel.Thetestsshowedexcellentagreementwiththemodelpredictions.KeywordsEdgebreakoutOrthogonalcuttingThreadingTurning1IntroductionItiswellknownthatthecuttingprocesscauseslocalizedshearinadiscretezonethatextendsfromthecuttingedgetothework-materialfreesurface1,2.Researchonthemicro-morphologyofmachinedchipsusingthescanningelectronmicroscope(SEM)hadrevealedthatthechipformationoccursbyrepeatedshearacrossthin“shearfront”ornarrowbands,whichproducealamellarstructureinthechips3.Mostofthesemachiningresultswereobtainedundertheconditionsoforthogonalcutting.SinceMerchant4developedthemetalcuttingmodelin1940s,manyfollowershadtriedtoestablishamoreaccuratefor-mulatopredicttheshearangleinorthogonalcutting2,57.Thusorthogonalcuttingbecomesthefundamentalprocessandthemostbasictopicinmetalcutting.ChernandDornfeld8hadfoundthateitherburroredgebreakoutwasformedwhenthecuttingtoollefttheworkpieceinorthogonalcutting.Achamfercouldbeobservedontheworkpieceifedgebreakoutoccurred.G.-L.ChernDept.ofMechanicalEngineering,NationalYunlinUniversityofScienceandTechnology,Yunlin,Taiwan640,R.O.C.E-mail:CHERNGL.twTel.:+886-5-534260/ext.4145Theydevelopedacriterionfortheformationofburroredgebreakoutandproposedaburr/breakoutpredictingmodel.Inorthogonalcutting,theperfectlysharpcuttingedgeisastraightlineextendingperpendiculartothecuttingvelocityandgeneratesaplanesurfaceafterthecut.Inrealmanufacturingpro-cesses,however,trueorthogonalcuttingisrarelyseen.Slotting(horizontalmilling)andshapingaretwotypesoforthogonalma-chiningprocesses.Buttherangeofcuttingvelocityofashaperisquitelimitedandthedepthofcut(whichistheundeformedchipthickness)isnotuniformduringslotting.Thus,bothshapingandslottinghavesomelimitationstoperformthedesiredcut-tingoperationandviolatesomerequirementsoftheorthogonalcutting.Awidelyusedarrangementtoachieveorthogonalcuttingis“turningendoftube.”Theendofatubeiscutinalathebyatoolwithzeroinclinationangle.Sincethediameterofthetubeismuchgreaterthanthethicknessofthewall,thecuttingvel-ocitycanbetreatedasconstantalongthetubethicknessduringthecutting.Thisarrangementofsetupisgoodforexperimentsinvestigatingthecuttingbehavior,butisnotsuitabletoobservetheformationofedgebreakoutattheexitstageofcutting.Inordertosimulateorthogonalcutting,ChernandDorn-feld8usedauniversalimpactmachinetoservethispurpose.Theconfigurationofthis“impactmachining”testisshowninFig.1.Thetoolisfixedtothependulumbythespeciallyde-signedtoolholder.Apre-cutisnecessaryinordertoobtainaconstantundeformedchipthickness.ThisexperimentalsetupFig.1.Schematicillustrationofimpactmachiningtest8966wasusedtogetsomeburrorbreakoutattheworkpieceedgeandtoverifytheirburr/breakoutpredictingmodel.Butthecut-tingspeedcannotbeadjustedinthetestssincetheinitialpositionofthependulumisfixed.Also,theundeformedchipthicknessishardtocontrol.Thispaperproposesanewexperimentalarrangementtosim-ulateorthogonalcuttingtoovercometheselimitationsanddis-advantages.Itintroducesthegeometryofthespeciallydesignedworkpieceandthecuttingtool.Theexperimentaldatawereusedtoverifytheedgebreakoutmodel,whichwaspreviouslyde-velopedbytheauthor8,9,attheexitstageoforthogonalcut-ting.Theexperimentalresultsshowedexcellentagreementwiththemodelpredictions.2EdgebreakoutpredictingmodelAttheexitoftheorthogonalcutting,eitherburroredgebreakout(negativeburr)isformed.Theauthorhadstudiedthemechan-ismsattheexitstageoforthogonalcuttingonburrformationandedgebreakoutusinganSEMsubstage8,9.Anegativedefor-mationplanebeginstoformwhenthesteadystatechipformationstopsasthetoolapproachestheendofthecut.Plasticbendingandshearingofthenegativedeformationplanearethedominantmechanismsofburrformationwhereascrackpropagationalongtheplanecausestheedgebreakout.Achamferiscreatedontheworkpiecewhenedgebreakoutoccurs.Basedontheseobservation,aburr/breakoutmodelwaspro-posedasshowninFig.2.InFig.2a,thetoolwitharakeangleadvancestoAwhereburrformationinitiates.istheshearangleandtoistheundeformedchipthickness,whichisalsothedepthofcutinthiscase.Initiationofburrformationischaracterizedbytheinitialnegativedeformationangle,denotedaso,andtheinitialtooldistanceoftooltipAfromtheendofworkpiece,.Developmentandfinalburrformationinvolvesomerotation,ascanbeseeninFigs.2band2c.Fig.2ad.Burr/breakoutformationmodel8ainitiationbdevelopmentcfinalburrformationdworkpiecewithexitangleDetailsofthemathematicalderivationofthisburr/edgebreakoutmodelcanbefoundinReferences8and9.Inthispaper,onlytheequationsnecessaryforthepredictionoftheedgebreakout,Eqs.14,arequotedasfollows.Thelengthoftheedgebreakoutsurface,isdefinedasthedistanceAJinFig.2dandcanbecalculatedas=to(cot+0.5coto)sin1tanocot.(1)Theexitangle,isdefinedastheanglebetweenthecuttingvelocityandtheedgeoftheworkpiece,asshowninFig.2d.Theshearangle,inchipformationwithaconstantcuttingvelocitycanbepredictedassuggestedbyWright2:=12sin1bracketleftbigg2yusinparenleftBig45+2parenrightBigcosparenleftBig452parenrightBigsinbracketrightbigg+2,(2)whereyistheyieldstressanduistheultimatetensilestrength.TheadvantageofusingEq.2isthatitisfullypredictiveifthework-materialpropertiesareknown.Theangleofthenegativedeformationplane,o,isobtainedbyChernandDornfeld8fromtheminimumwork-rateassumptionandmustsatisfyddo(cottano+0.5)2+3coto3cot(+o)=0.(3)TheequivalentstrainatAinFig.2d,A,iscalculatedbyusingthevonMisestheory10asA=13cotocot(+o).(4)WhenAreachesthevalueoff,whichisthefracturestrainofthematerial,fractureoccursalongthenegativedeformationplaneandedgebreakoutisformed.Otherwiseaburrisformed,whichisnotconsideredanddiscussedinthispaper.3ExperimentalsetupAsetofexperimentswasdesignedtosimulateorthogonalmachining,utilizingacylindricalbarwith“threads.”Squaregroovesarecreatedalongtheaxialdirectionofthebartoprovideexitedges.Moreover,thegeometryofeachgrooveisspeciallydesignedtohaveacertainexitangleforthisstudy.Thedimen-sionandthecross-sectionoftheworkpieceareshowninFig.3.Theexitanglesforeachgrooveare30,60,90,and120degrees,respectively,ineachrevolution.Theratiooftheradiusoftheworkpiece,44.45mm(1.75in),tothemaximumdepthofcut,0.25mm(0.01in),is175:1.Thustheeffectduetothecurvatureoftheworkpiececanbeneglected.TheexperimentswereconductedonaCNClathe.ThetoolusedforthesetestsisaKennametalthreadingandgroovingin-sert(#NB3R-K420)withaflatcuttingedge.Thetoolholder(#NSR-2525M3)wasmodified,byremovingitsclearanceangleof967Fig.3.Dimensionandcross-sectionofthedesignedworkpieceTable1.CuttingconditionsandtoolgeometryCuttingspeed1.52,3.05,4.57,6.1m/s(5,10,15,20ft/s)Depthofcut,to0.15,0.25mm(0.006,0.01in)Exitangle,30,60,90,120(onworkpiece)Rakeangle,0Noseradius0.03mm(0.0012in)CuttingfluidAirthreedegrees,toprovideauniformdepthofcutinthemachiningtests.WorkpiecesbeingmachinedweremadeofaluminumalloyAl6061-T6.Theyieldstressandtheultimatetensilestrengthare275MPaand310MPa,respectively.Table1showsthecuttingconditionsofthese“threadcut-ting”tests.Thewidthofthecuttingedgeis4.95mm.Inordertoobtainauniformwidthofcutof3.175mm(0.125in),thefeedrateintheaxialdirectionisfixedasthepitchofthethreads,6.35mm/rev(0.25ipr).Depthofcut(undeformedchipthick-ness)inthesetestsistheadvancemovementofthetoolintheradialdirectionoftheworkpiece,beingchosenas0.15mm(0.006in)and0.25mm(0.01in).Therangeofthecuttingspeedisfrom1.52m/sto6.1m/s(5ft/sto20ft/s).Sincetheratioofthemaximumdepthofcuttothewidthofcutislessthan1/10,aplanestrainconditionissustained.4ResultsandmodelverificationToutilizethepreviouslydevelopedmodel,theshearangle,wasfirstcalculatedfromEq.2tobe31degrees.Onceisknown,thenegativedeformationangle,o,canbedeterminedbyEq.3foragivenexitangle,.Thentheequivalentstrain,A,iscalculatedfromEq.4.ThecalculatedvaluesofoandATable2.CalculatedvaluesofnegativedeformationangleandequivalentstrainExitangleNegativedeformationangleEquivalentstrain3012.02.106020.71.079029.20.7012040.80.48foreachexitangleareshowninTable2.Comparingthecalcu-latedAwiththefracturestrainoftheworkpiece,whichis0.5,wecanpredictwhetheredgebreakoutwilloccur.Itisfoundthatedgebreakoutoccursexceptfortheedgeswitha120-degreeexitangle.Lengthoftheedgebreakoutsurface,orbreakoutlength,canbepredictedbyEq.1.Figure4showsthesilhouetteofthemachinedworkpiecewithabreakout.Thebreakoutlengthsweremeasuredbyanopticalmicroscope.Figures5and6showthemeasuredandpredictedbreakoutlengthswithrespecttodifferentexitanglesandcuttingspeeds.Fromthesefigureswecanseethata90-degreeexitangletendstocausesmallerbreakoutlengths.Thepredictionfromthepro-posedmodelalsoshowssuchatendency.Thereasonforthisphenomenonisthatthenegativedeformationanglefora90-degreeexitangleislargerthanforboth30-degreeand60-degreeexitangles.ThismakesthelocationofpointAinFig.2dclosertopointJ,whereAJdeterminesthebreakoutlength.Foragivenexitangle,breakoutlengthincreaseswiththedepthofcut,ascanbeseenbycomparingFig.5withFig.6fordifferentdepthofcut.Thecuttingspeedcausessomevariationsonthebreakoutlengths.However,itsinfluence,comparedwiththedepthofcutandtheexitangle,isnotdominantunderthecho-sencuttingconditions.ThiscanbeunderstoodfromEq.2,whichexpectsthatshearangledoesnotchangewiththecuttingspeed.Followingthecalculatingprocedureasdepicted,thepredictedbreakoutlengthisfoundtobethesameforagivenshearangle.Thisisthelimitationfollowingfromthechosenshear-anglepre-dictingformula.Theangleofedgebreakoutonthemachinedworkpiece,whichisthesameasthenegativedeformationangleoforacertainexitangle,wasnotmeasuredinthisexperiment,duetotheconstraintsoftheexperimentalsetup.However,wecanFig.4.Photographshowingamachinedworkpiecewithabreakout968Fig.5.Measuredandpredictedbreakoutlengthsfordepthofcutof0.15mmstillqualitativelystudythisanglebyexaminingthebreakoutchamferformedafterthecutting.Itwasobservedthattheedge-breakoutangleincreaseswiththeexitangle
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 武松相关课件内容
- 高端住宅小区车位购置违约责任及赔偿规范合同
- 车库租赁及停车场智能化升级合同范本
- 高新技术产业园区厂房废品处理押金合同范本
- 餐厅特色美食体验活动合作协议
- 离婚双方共同子女抚养及财产分割协议范本
- 房地产开发贷款担保合同模板
- 成都市二手房买卖合同违约金计算与支付规范文本
- 教育项目财务担保合同会计核算与教育资金管理
- 车辆租赁合同终止及二手车交易协议
- 2025年春人教版(PEP)(2024)小学英语三年级下册教学计划
- 青光眼病理生理学新发现-深度研究
- 电梯安全宣传
- 银币收藏与投资指南
- 中华人民共和国学前教育法解读
- 2025年中国百合行业发展运行现状及投资战略规划报告
- 日间手术流程规范
- 公司节能诊断报告
- 2024年09月2024秋季中国工商银行湖南分行校园招聘620人笔试历年参考题库附带答案详解
- 《冬病夏治》课件
- 《水浒传》阅读计划
评论
0/150
提交评论